Un desconcertante sistema de seis exoplanetas desafía las teorías de cómo se forman los planetas
.
Un equipo de astrónomos ha revelado la existencia de un sistema que consta de seis exoplanetas, cinco de los cuales bailan a un extraño compás alrededor de su estrella central. Los investigadores creen que el sistema podría proporcionar pistas importantes sobre cómo los planetas, incluidos los del Sistema Solar, se forman y evolucionan.
.
Representación artística del sistema planetario TOI-178. ESO/L. Calçada/spaceengine.org
.
.
La primera vez que el equipo observó TOI-178, una estrella a unos 200 años luz de distancia, en la constelación de Sculptor, pensaron que habían visto dos planetas rodeándola en la misma órbita. Sin embargo, al echar un vistazo más de cerca, vieron algo completamente diferente. “Tras llevar a cabo más observaciones, nos dimos cuenta de que no había dos planetas orbitando la estrella a aproximadamente la misma distancia de ella, sino más bien múltiples planetas en una configuración muy especial”, dice Adrien Leleu, de la Universidad de Ginebra y la Universidad de Berna (Suiza), quien ha dirigido un nuevo estudio sobre este sistema publicado hoy en la revista Astronomy & Astrophysics.
La nueva investigación ha revelado que el sistema cuenta con seis exoplanetas y que todos, menos el más cercano a la estrella, son prisioneros de una rítmica danza mientras se mueven en sus órbitas. En otras palabras, están en resonancia. Esto significa que hay patrones que se repiten a medida que los planetas se mueven alrededor de la estrella, haciendo que algunos planetas se alineen cada pocas órbitas. Una resonancia similar se observa en las órbitas de tres de las lunas de Júpiter: Ío, Europa y Ganímedes. Ío, el más cercano de los tres a Júpiter, completa cuatro órbitas alrededor de Júpiter para cada órbita de Ganímedes, la más lenta, y dos órbitas completas por cada órbita de Europa.
Los cinco exoplanetas exteriores del sistema TOI-178 siguen una cadena de resonancia mucho más compleja, una de las más largas descubiertas hasta ahora en un sistema de planetas. Mientras que las tres lunas de Júpiter están en una resonancia de 4:2:1, los cinco planetas exteriores del sistema TOI-178 siguen una cadena de 18:9:6:4:3, es decir, mientras que el segundo planeta de la estrella (el primero en la cadena de resonancia) completa 18 órbitas, el tercer planeta desde el principio (segundo en la cadena) completa 9 órbitas, y así sucesivamente. De hecho, inicialmente los científicos sólo encontraron cinco planetas en el sistema, pero siguiendo este ritmo resonante calcularon dónde podría haber otro planeta adicional para buscarlo en cuando dispusieran de una ventana de observación.
Más que una curiosidad orbital, esta danza de planetas resonantes proporciona pistas sobre el pasado del sistema. “Las órbitas de este sistema están muy bien ordenadas, lo que nos dice que este sistema ha evolucionado de una forma suave desde su nacimiento”, explica el coautor, Yann Alibert, de la Universidad de Berna. Si el sistema hubiera sufrido perturbaciones importantes en los momentos iniciales de su formación, por ejemplo, por un gran impacto, esta frágil configuración de órbitas no habría sobrevivido.
Trastorno en el sistema rítmico
Aunque la disposición de las órbitas sea clara y bien ordenada, las densidades de los planetas “son mucho más desordenadas”, afirma Nathan Hara, de la Universidad de Ginebra (Suiza), quien también participó en el estudio. “Parece que hay un planeta tan denso como la Tierra justo al lado de un planeta muy esponjoso, con la mitad de la densidad de Neptuno, seguido de un planeta con la densidad de Neptuno. No es a lo que estamos acostumbrados”. En nuestro Sistema Solar, por ejemplo, los planetas están perfectamente dispuestos, con los planetas rocosos y más densos más cerca de la estrella central y los esponjosos planetas gaseosos de baja densidad más alejados.
Según Leleu, “Este contraste entre la armonía rítmica del movimiento orbital y las densidades desordenadas desafía sin duda nuestra comprensión de la formación y evolución de los sistemas planetarios”.
Combinando técnicas
Para estudiar la inusual arquitectura del sistema, el equipo utilizó datos del satélite CHEOPS, de la Agencia Espacial Europea, junto con el instrumento ESPRESSO, instalado en el telescopio VLT de ESO, y los telescopios NGTS y SPECULOOS, ambos situados en el Observatorio Paranal de ESO, en Chile. Dado que los exoplanetas son extremadamente difíciles de detectar directamente con telescopios, los astrónomos deben confiar en otras técnicas para detectarlos. Los principales métodos utilizados son los tránsitos por imágenes —observando la luz emitida por la estrella central, que se atenúa cuando un exoplaneta pasa delante de ella al observarla desde la Tierra— y las velocidades radiales— observando el espectro de luz de la estrella en busca de pequeños signos de bamboleos que ocurren a medida que los exoplanetas se mueven en sus órbitas. El equipo utilizó ambos métodos para observar el sistema: CHEOPS, NGTS y SPECULOOS para tránsitos y ESPRESSO para velocidades radiales.
Mediante la combinación de las dos técnicas, el equipo fue capaz de recopilar información clave sobre el sistema y sus planetas, que orbitan su estrella central mucho más cerca y mucho más rápido de lo que la Tierra orbita el Sol. El más rápido (el planeta más interior) completa una órbita en sólo un par de días, mientras que el más lento tarda unas diez veces más. Los seis planetas tienen tamaños que van desde aproximadamente uno hasta aproximadamente tres veces el tamaño de la Tierra, mientras que sus masas son de 1,5 a 30 veces la masa de la Tierra. Algunos de los planetas son rocosos, pero más grandes que la Tierra— estos planetas se conocen como Supertierras. Otros son planetas gaseosos, como los planetas exteriores de nuestro Sistema Solar, pero son mucho más pequeños (los apodados minineptunos).
Aunque ninguno de los seis exoplanetas encontrados se encuentra en la zona habitable de la estrella, los investigadores sugieren que, al continuar con la cadena de resonancia, podrían encontrar más planetas en esa zona o muy cerca. El Telescopio Extremadamente Grande (ELT) de ESO, que comenzará a funcionar esta década, podrá obtener imágenes directas de exoplanetas rocosos en la zona habitable de una estrella e incluso caracterizar sus atmósferas, proporcionándonos una oportunidad para conocer con mayor detalle sistemas como TOI-178.
La nueva investigación ha revelado que el sistema cuenta con seis exoplanetas y que todos, menos el más cercano a la estrella, son prisioneros de una rítmica danza mientras se mueven en sus órbitas. En otras palabras, están en resonancia. Esto significa que hay patrones que se repiten a medida que los planetas se mueven alrededor de la estrella, haciendo que algunos planetas se alineen cada pocas órbitas. Una resonancia similar se observa en las órbitas de tres de las lunas de Júpiter: Ío, Europa y Ganímedes. Ío, el más cercano de los tres a Júpiter, completa cuatro órbitas alrededor de Júpiter para cada órbita de Ganímedes, la más lenta, y dos órbitas completas por cada órbita de Europa.
Los cinco exoplanetas exteriores del sistema TOI-178 siguen una cadena de resonancia mucho más compleja, una de las más largas descubiertas hasta ahora en un sistema de planetas. Mientras que las tres lunas de Júpiter están en una resonancia de 4:2:1, los cinco planetas exteriores del sistema TOI-178 siguen una cadena de 18:9:6:4:3, es decir, mientras que el segundo planeta de la estrella (el primero en la cadena de resonancia) completa 18 órbitas, el tercer planeta desde el principio (segundo en la cadena) completa 9 órbitas, y así sucesivamente. De hecho, inicialmente los científicos sólo encontraron cinco planetas en el sistema, pero siguiendo este ritmo resonante calcularon dónde podría haber otro planeta adicional para buscarlo en cuando dispusieran de una ventana de observación.
Más que una curiosidad orbital, esta danza de planetas resonantes proporciona pistas sobre el pasado del sistema. “Las órbitas de este sistema están muy bien ordenadas, lo que nos dice que este sistema ha evolucionado de una forma suave desde su nacimiento”, explica el coautor, Yann Alibert, de la Universidad de Berna. Si el sistema hubiera sufrido perturbaciones importantes en los momentos iniciales de su formación, por ejemplo, por un gran impacto, esta frágil configuración de órbitas no habría sobrevivido.
Trastorno en el sistema rítmico
Aunque la disposición de las órbitas sea clara y bien ordenada, las densidades de los planetas “son mucho más desordenadas”, afirma Nathan Hara, de la Universidad de Ginebra (Suiza), quien también participó en el estudio. “Parece que hay un planeta tan denso como la Tierra justo al lado de un planeta muy esponjoso, con la mitad de la densidad de Neptuno, seguido de un planeta con la densidad de Neptuno. No es a lo que estamos acostumbrados”. En nuestro Sistema Solar, por ejemplo, los planetas están perfectamente dispuestos, con los planetas rocosos y más densos más cerca de la estrella central y los esponjosos planetas gaseosos de baja densidad más alejados.
Según Leleu, “Este contraste entre la armonía rítmica del movimiento orbital y las densidades desordenadas desafía sin duda nuestra comprensión de la formación y evolución de los sistemas planetarios”.
Combinando técnicas
Para estudiar la inusual arquitectura del sistema, el equipo utilizó datos del satélite CHEOPS, de la Agencia Espacial Europea, junto con el instrumento ESPRESSO, instalado en el telescopio VLT de ESO, y los telescopios NGTS y SPECULOOS, ambos situados en el Observatorio Paranal de ESO, en Chile. Dado que los exoplanetas son extremadamente difíciles de detectar directamente con telescopios, los astrónomos deben confiar en otras técnicas para detectarlos. Los principales métodos utilizados son los tránsitos por imágenes —observando la luz emitida por la estrella central, que se atenúa cuando un exoplaneta pasa delante de ella al observarla desde la Tierra— y las velocidades radiales— observando el espectro de luz de la estrella en busca de pequeños signos de bamboleos que ocurren a medida que los exoplanetas se mueven en sus órbitas. El equipo utilizó ambos métodos para observar el sistema: CHEOPS, NGTS y SPECULOOS para tránsitos y ESPRESSO para velocidades radiales.
Mediante la combinación de las dos técnicas, el equipo fue capaz de recopilar información clave sobre el sistema y sus planetas, que orbitan su estrella central mucho más cerca y mucho más rápido de lo que la Tierra orbita el Sol. El más rápido (el planeta más interior) completa una órbita en sólo un par de días, mientras que el más lento tarda unas diez veces más. Los seis planetas tienen tamaños que van desde aproximadamente uno hasta aproximadamente tres veces el tamaño de la Tierra, mientras que sus masas son de 1,5 a 30 veces la masa de la Tierra. Algunos de los planetas son rocosos, pero más grandes que la Tierra— estos planetas se conocen como Supertierras. Otros son planetas gaseosos, como los planetas exteriores de nuestro Sistema Solar, pero son mucho más pequeños (los apodados minineptunos).
Aunque ninguno de los seis exoplanetas encontrados se encuentra en la zona habitable de la estrella, los investigadores sugieren que, al continuar con la cadena de resonancia, podrían encontrar más planetas en esa zona o muy cerca. El Telescopio Extremadamente Grande (ELT) de ESO, que comenzará a funcionar esta década, podrá obtener imágenes directas de exoplanetas rocosos en la zona habitable de una estrella e incluso caracterizar sus atmósferas, proporcionándonos una oportunidad para conocer con mayor detalle sistemas como TOI-178.
.
Información adicional | Este trabajo de investigación se ha presentado en el artículo científico “Six transiting planets and a chain of Laplace resonances in TOI-178”, publicado en a revista Astronomy & Astrophysics.
.
FUENTE • European Southem Observatory | ESO
.
ETIQUETAS • Astronomía, European Southern Observatory,
.
CONTENIDO RELACIONADO
.
0 comentarios: