.
Astrónomos de la Universidad de Arizona han encontrado un cuásar a una distancia récord: unos 13.030 millones de años-luz de la Tierra. Se formó solo 670 millones de años después del Big Bang y alberga un desafiante agujero negro supermasivo con una masa equivalente a 1.600 millones de soles.
.
Ilustración de cuásar J0313-1806, con su agujero negro supermasivo central. NOIRLab/NSF/AURA/J. da Silva
.
.
Un cuásar (acrónimo de fuente de radio CUASistelAR) es un núcleo galáctico extremadamente luminoso con un agujero negro supermasivo en su interior rodeado de un disco de acreción gaseoso. A medida que el gas cae hacia el agujero, se libera gran cantidad de energía en forma de radiación, observable en todo el espectro electromagnético.
Los cuásares se encuentran entre las fuentes más brillantes del cosmos, a menudo eclipsando a sus propias galaxias anfitrionas. Para calcular su distancia, los astrónomos se fijan en el llamado desplazamiento al rojo dentro del espectro, lo que permite mirar atrás en el tiempo para ver cuántos años después del Big Bang se formaron.
Hasta ahora el récord lo ostentaba el cuásar J1342 + 0928, con un corrimiento al rojo de 7,54, lo se corresponde a cuando el universo tenía 690 millones de años, pero ahora científicos de la Universidad de Arizona (EE UU) ha observado otro cuásar, llamado J0313-1806, que nació unos 20 millones de años antes, cuando el universo tenía casi un 5% de su edad actual.
“El cuásar J0313-1806 tiene un corrimiento al rojo de 7,642, que corresponde a solo 670 millones de años después del Big Bang”, explica a Sinc el autor principal del estudio, Feige Wang, investigador en el Observatorio Steward de la Universidad de Arizona. Es, por tanto, el más antiguo conocido, y por extensión el más distante. Se sitúa a unos 13.030 millones de años-luz de la Tierra.
El equipo descubridor publicará sus hallazgos en el Astrophysical Journal Letters pero esta semana ya los ha presentado en la 237ª Reunión de la Sociedad Astronómica Americana, que en esta ocasión se celebra de forma virtual.
Un agujero negro que desafía las teorías
Además de ser el más lejano, Wang destaca los otros tres puntos clave de este cuásar: su agujero negro supermasivo (también el más antiguo o distante conocido), el chorro de 'viento' que emite y la alta tasa de formación de estrellas en su galaxia. “Lo primero –aclara–, es que alberga un agujero negro supermasivo (SMBH en inglés) con un tamaño de 1.600 millones de masas solares, unas dos veces más masivo que J1342 + 0928. La existencia de este SMBH tan masivo requiere un agujero negro semilla con más de 10.000 masas solares, y esto desafía las teorías de la formación de estos objetos”, aunque su hallazgo ayuda a restringir las posibilidades contempladas hasta ahora.
Otro de los autores, el profesor Xiaohui Fan, explica: "Pensamos que existe un mecanismo que involucra enormes cantidades de gas de hidrógeno frío primordial colapsando directamente en el agujero negro semilla, que no requiere de estrellas completas como materia prima (como indicaban algunos modelos). Esto es lo único que permitiría que el agujero negro supermasivo del cuásar J0313-1806 crezca hasta los 1.600 millones de masas solares en un momento tan temprano del universo, y esto es lo que hace que el nuevo récord del cuásar sea tan valioso".
Viento a enormes velocidades
"Otro punto clave es que tiene un chorro (de gas y plasma supercalientes) saliendo extremadamente rápido, emanando del cuásar en forma de un viento que viaja al 20 % de la velocidad de la luz, la primera evidencia de este 'feedback' en un cuásar en etapas tan tempranas del universo", apunta Wang.
Midiendo la luminosidad de J0313-1806, su equipo calculó que el gran agujero negro de su centro está ingiriendo el equivalente a unos 25 soles cada año, y esta sería la principal razón del viento de plasma caliente que sopla en la galaxia de su alrededor a una velocidad relativista. Por comparar, el agujero negro del centro de la Vía Láctea está casi inactivo.
Alta tasa de formación de estrellas
Por último, la galaxia que aloja el cuásar también tiene una característica relevante: está formando nuevas estrellas a un ritmo 200 veces superior al de nuestra Vía Láctea, mil veces menos luminosa y que genera aproximadamente una masa solar cada año. "Esa tasa de formación estelar relativamente alta, similar a la observada en otros cuásares de edad similar, nos dice que la galaxia anfitriona está creciendo muy rápido", señala Wang.
Además, estos cuásares presumiblemente están todavía en el proceso de construcción de sus agujeros negros supermasivos", añade Fan. "Con el tiempo, el chorro de salida del cuásar se calienta y empuja todo el gas hacia fuera de la galaxia. Entonces el agujero negro ya no tiene nada con lo que seguir alimentándose y dejará de crecer. Esta es la evidencia de cómo crecen estas primeras galaxias masivas y sus cuásares".
Los investigadores esperan encontrar algunos cuásares más del mismo período de tiempo, incluyendo potenciales nuevos récords, adelanta el coautor Jinyi Yang, también del Observatorio Steward. Yang y Fan estaban observando en el telescopio terrestre Magellan Baade de 6,5 metros en el Observatorio de Las Campanas en Chile la noche en que se descubrió J0313-1806.
El equipo de astrónomos seguirá realizando nuevas observaciones y espera descubrir más secretos del nuevo cuásar con el futuro telescopio espacial James Webb de la NASA, cuyo lanzamiento está previsto a finales de este 2021.
.
.
.
.
.
El planeta es famoso por sus distintivas bandas rojas y blancas: nubes arremolinadas de gas en movimiento que los astrónomos utilizan tradicionalmente para rastrear los vientos de SU atmósfera inferior.
.
Esta imagen es una representación artística de los vientos en la estratosfera de Júpiter cerca del polo sur del planeta.
ESO / L. Calçada & NASA/JPL-Caltech/SwRI/MSSS
.
.
Utilizando el conjunto ALMA (Atacama Large Millimeter/submillimeter Array), un equipo de astrónomos ha medido por primera vez, de forma directa, los vientos de la atmósfera media de Júpiter. Al analizar las secuelas de una colisión de cometas que tuvo lugar en la década de 1990, los investigadores han revelado que, cerca de los polos de Júpiter, se desencadenaron vientos de una enorme potencia, con velocidades de hasta 1450 kilómetros por hora. Podrían representar lo que el equipo ha descrito como una "bestia meteorológica única en nuestro Sistema Solar".
Júpiter es famoso por sus distintivas bandas rojas y blancas: nubes arremolinadas de gas en movimiento que los astrónomos utilizan tradicionalmente para rastrear los vientos de la atmósfera inferior de Júpiter. Los astrónomos también han visto, cerca de los polos de Júpiter, los vívidos resplandores conocidos como auroras, que parecen estar asociados con fuertes vientos en la atmósfera superior del planeta. Pero, hasta ahora, los investigadores nunca habían podido medir de forma directa los patrones de los vientos que tienen lugar entre estas dos capas atmosféricas, en la estratosfera.
Medir las velocidades del viento en la estratosfera de Júpiter utilizando técnicas de seguimiento de nubes es imposible debido a la ausencia de nubes en esta parte de la atmósfera. Sin embargo, los astrónomos obtuvieron una ayuda alternativa para poder llevar a cabo estas mediciones: el cometa Shoemaker-Levy 9, que colisionó con el gigante gaseoso de manera espectacular en 1994. Este impacto produjo nuevas moléculas en la estratosfera de Júpiter, donde se han estado moviendo con los vientos desde entonces.
Un equipo de astrónomos, dirigido por Thibault Cavalié, del Laboratorio de Astrofísica de Burdeos (Francia), ha rastreado una de estas moléculas – cianuro de hidrógeno – para medir directamente los "chorros" estratosféricos en Júpiter. Los científicos usan la palabra "chorros" para referirse a bandas estrechas de viento en la atmósfera, como las corrientes de chorro de la Tierra.
“El resultado más espectacular es la presencia de fuertes chorros, con velocidades de hasta 400 metros por segundo, que se encuentran bajo la aurora, cerca de los polos”, afirma Cavalié. Estas velocidades de viento, equivalentes a unos 1450 kilómetros por hora, son más del doble de las velocidades máximas de tormenta alcanzadas en la Gran Mancha Roja de Júpiter y más del triple de la velocidad del viento medida en los tornados más fuertes de la Tierra.
“Nuestra detección indica que estos chorros podrían comportarse como un vórtice gigante con un diámetro de hasta cuatro veces el de la Tierra y unos 900 kilómetros de altura”, explica el coautor, Bilal Benmahi, también del Laboratorio de Astrofísica de Burdeos. “Un vórtice de este tamaño sería una bestia meteorológica única en nuestro Sistema Solar”,añade Cavalié.
Los astrónomos conocían los fuertes vientos que hay cerca de los polos de Júpiter, pero en una parte mucho más alta de la atmósfera, cientos de kilómetros por encima del área en la que se centra el nuevo estudio, que se publica hoy en la revista Astronomy & Astrophysics. Estudios previos predijeron que estos vientos de la atmósfera superior disminuirían en velocidad y desaparecerían mucho antes de llegar a una zona tan profunda como la estratosfera. Según Cavalié, “Los nuevos datos de ALMA nos dicen lo contrario”, y añade que encontrar estos fuertes vientos estratosféricos cerca de los polos de Júpiter fue una "verdadera sorpresa".
El equipo utilizó 42 de las 66 antenas de alta precisión de ALMA, ubicadas en el desierto de Atacama, en el norte de Chile, para analizar las moléculas de cianuro de hidrógeno que se han estado moviendo en la estratosfera de Júpiter desde el impacto de Shoemaker-Levy 9. Los datos de ALMA les permitieron medir el efecto Doppler —pequeños cambios en la frecuencia de la radiación emitida por las moléculas— causado por los vientos en esta región del planeta. “Al medir este cambio, pudimos deducir la velocidad de los vientos de manera muy similar a como se hace para deducir la velocidad de un tren que pasa por el cambio en la frecuencia del silbato del tren”, explica el coautor del estudio, Vincent Hue, científico planetario del Instituto de Investigación Southwest, en Estados Unidos.
Además de los sorprendentes vientos polares, el equipo utilizó ALMA para confirmar, también por primera vez, la existencia de fuertes vientos estratosféricos alrededor del ecuador del planeta midiendo directamente su velocidad. Los chorros detectados en esta parte del planeta tienen velocidades medias de unos 600 kilómetros por hora.
El tiempo de telescopio empleado por ALMA para llevar a cabo las observaciones con las que se rastrearon los vientos estratosféricos, tanto en los polos como en el ecuador de Júpiter, fue de menos de 30 minutos. “Los altos niveles de detalle que logramos en este corto espacio de tiempo demuestran realmente la capacidad de las observaciones de ALMA”, dice Thomas Greathouse, científico del Instituto de Investigación Southwest (EE.UU.) y coautor del estudio. “Para mí es asombroso poder ver la primera medición directa de estos vientos”.
“Estos resultados de ALMA abren una nueva ventana para el estudio de las regiones de Júpiter con auroras, algo realmente inesperado hace tan solo unos meses”, afirma Cavalié. “También preparan el escenario para mediciones similares, pero más extensas, que realizarán la misión JUICE y su instrumento de ondas submilimétricas”, añade Greathouse, refiriéndose al JUpiter ICy moons Explorer (explorador de las lunas heladas de Júpiter) de la Agencia Espacial Europea, que se espera se lance al espacio el próximo año.
El Telescopio Extremadamente Grande (ELT) de ESO, basado en tierra y que verá su primera luz a finales de esta década, también explorará Júpiter. El ELT será capaz de hacer observaciones muy detalladas de las auroras del planeta, dándonos más información sobre su atmósfera.
.
.
.
.
.
Un equipo de astrónomos del Observatorio Europeo Austral (ESO) y de otras instituciones ha descubierto un agujero negro a solo 1.000 años luz de la Tierra. Es el agujero negro más cercano a nuestro Sistema Solar jamás detectado hasta la fecha y forma parte de un sistema triple que se puede ver a simple vista.
.
Representación artística del sistema triple con el agujero negro más cercano a la Tierra descubierto hasta la fecha.
Crédito: ESO/L. Calçada
.
.
“Nos sorprendimos mucho cuando nos dimos cuenta de que se trata del primer sistema estelar con un agujero negro que se puede ver a simple vista”, afirma Petr Hadrava, científico emérito de la Academia de Ciencias de la República Checa, en Praga, y coautor de la investigación. Situado en la constelación de Telescopium, el sistema está tan cerca de nosotros que sus estrellas se pueden ver desde el hemisferio sur en una noche oscura y despejada sin prismáticos ni telescopio. “Este sistema contiene el agujero negro más cercano a la Tierra que conocemos”, confirma el científico del Observatorio Europeo Austral (ESO) Thomas Rivinius, quien dirigió el estudio publicado hoy en la revista Astronomy & Astrophysics.
En un principio, el equipo estudiaba el sistema, llamado HR 6819, como parte de un estudio de sistemas de doble estrella. Sin embargo, al analizar sus observaciones, quedaron sorprendidos al descubrir un tercer cuerpo, previamente desconocido en HR 6819: un agujero negro. Las observaciones con el espectrógrafo FEROS, instalado en el Telescopio MPG/ESO de 2,2 metros, en La Silla, mostraron que una de las dos estrellas visibles orbita alrededor de un objeto invisible cada 40 días, mientras que la segunda estrella está a una gran distancia de este par interior.
Tal y como cuenta Dietrich Baade, astrónomo emérito de ESO en Garching y coautor del estudio, “Las observaciones necesarias para determinar el período de 40 días tuvieron que extenderse durante varios meses. Esto fue posible gracias al esquema pionero del servicio de observación de ESO, en virtud del cual el personal de ESO hace observaciones en nombre de los científicos que las necesitan”.
El agujero negro oculto en HR 6819 es uno de los primeros agujeros negros de masa estelar descubierto que no interactúan violentamente con su entorno y, por lo tanto, parecen verdaderamente negros. Pese a ello, el equipo pudo detectar su presencia y calcular su masa estudiando la órbita de la estrella situada en el par interior. “Un objeto invisible con una masa de, al menos, 4 veces la del Sol, sólo puede ser un agujero negro”, concluye Rivinius, que trabaja en Chile.
Hasta la fecha, los astrónomos han detectado tan solo un par de docenas de agujeros negros en nuestra galaxia, y casi todos ellos interactúan con su entorno y dan a conocer su presencia mediante la liberación de potentes rayos X. Pero los científicos estiman que, a lo largo de la vida de la Vía Láctea, muchas más estrellas acabaron colapsando como agujeros negros al terminar sus vidas. El descubrimiento de un agujero negro silencioso e invisible en HR 6819 proporciona pistas sobre dónde podrían estar los numerosos agujeros negros ocultos en la Vía Láctea. “Debe haber cientos de millones de agujeros negros por ahí, pero conocemos muy pocos. Saber qué buscar debería facilitarnos la tarea de encontrarlos”, afirma Rivinius. Baade añade que encontrar un agujero negro en un sistema triple tan cercano indica que estamos viendo sólo “la punta de un emocionante iceberg”.
De hecho, los astrónomos creen que su descubrimiento ya podría arrojar algo de luz sobre un segundo sistema. “Nos dimos cuenta de que otro sistema, llamado LB-1, también puede ser triple, aunque necesitaríamos más observaciones para afirmarlo con seguridad”, confirma Marianne Heida, becaria postdoctoral de ESO y coautora del artículo. “LB-1 está un poco más lejos de la Tierra, pero todavía lo bastante cerca en términos astronómicos, lo cual significa que probablemente existen muchos más sistemas como este. Al encontrarlos y estudiarlos podemos aprender mucho sobre la formación y evolución de esas estrellas que comienzan sus vidas con más de 8 veces la masa del Sol y terminan en una explosión de supernova que deja tras de sí un agujero negro”.
Los descubrimientos de estos sistemas triples con un par interno de estrellas y una estrella alejada también podrían proporcionar pistas sobre las violentas fusiones cósmicas que liberan ondas gravitacionales lo suficientemente poderosas como para ser detectadas en la Tierra. Algunos astrónomos creen que las fusiones pueden ocurrir en sistemas con una configuración similar a HR 6819 o LB-1, pero donde el par interno se compone de dos agujeros negros o de un agujero negro y una estrella de neutrones. El objeto exterior distante podría influir gravitacionalmente en el par interno de manera que podría desencadenar una fusión y la liberación de ondas gravitacionales. Aunque HR 6819 y LB-1 solo tienen un agujero negro y no tienen estrellas de neutrones, estos sistemas podrían ayudar a los científicos a entender cómo pueden tener lugar colisiones estelares en sistemas triples de estrellas.
.
.
.
.
.
Desde hace dos décadas se conoce que la interacción magnética entre Júpiter y una de sus lunas mayores, Ío, genera gran cantidad de emisión en radio similar a las auroras terrestres. Tras el descubrimiento del planeta Proxima b en torno a la estrella más cercana a nosotros, Proxima Centauri, un grupo de investigadores del IAA-CSIC se propuso comprobar si en este sistema solar vecino se producen también interacciones en radio.
.
Un estudio en radio de Próxima Centauri, el sistema planetario más cercano, abre una nueva vía para el estudio de los exoplanetas
.
.
Desde hace dos décadas se conoce que la interacción magnética entre Júpiter y una de sus lunas mayores, Ío, genera gran cantidad de emisión en radio similar a las auroras terrestres (producidas, a su vez, por la interacción de partículas eléctricamente cargadas procedentes del Sol con la atmósfera de la Tierra). Tras el descubrimiento del planeta Proxima b en torno a la estrella más cercana a nosotros, Proxima Centauri, un grupo de investigadores del Instituto de Astrofísica de Andalucía (IAA-CSIC) se propuso comprobar si en este sistema solar vecino se producen también interacciones en radio. Su hallazgo abre una nueva vía en el estudio de los planetas extrasolares.
“Este tipo de emisión de ondas de radio es posible porque el sistema planetario de Próxima tiene unas propiedades particulares: se trata de una estrella mucho más activa que nuestro Sol y el planeta Próxima b se encuentra muy cerca de ella; de hecho, se halla diez veces más cerca de su estrella que Mercurio del Sol”, apunta Miguel Pérez-Torres, investigador del IAA-CSIC que encabeza el estudio.
La campaña de observación se llevó a cabo con el ATCA (Australia Telescope Compact Array), un radiotelescopio formado por seis antenas de veintidós metros, y se prolongó a lo largo de diecisiete días terrestres. Como el planeta Próxima b da una vuelta completa alrededor de su estrella cada 11.2 días (mucho menos que los 365 días de la órbita terrestre), los investigadores observaron la emisión procedente del sistema planetario de Próxima durante el equivalente a un año y medio.
“Detectamos emisión en radio durante la mayor parte de la campaña de observación, con épocas de emisión más intensa. Estos máximos se detectaron dos veces por cada periodo orbital, cuando el planeta halla, visto desde la Tierra, más separado de su estrella –señala José Francisco Gómez, investigador del IAA-CSIC que participa en el hallazgo–. Los datos que hemos obtenido concuerdan muy bien con lo que predicen modelos de interacción entre la estrella y el planeta”.
Se trata de un trabajo pionero, ya que muestra por primera vez que se puede detectar la existencia de un planeta fuera del Sistema Solar observando con radiotelescopios las variaciones periódicas del sistema. “Esto abre un nuevo camino para el estudio de otros planetas que, en algunos casos, no podrían detectarse mediante otras técnicas, y que resulta muy prometedor si pensamos en los radiotelescopios excepcionalmente sensibles que están en desarrollo, como el Square Kilometre Array (SKA)”, indica Miguel Pérez-Torres.
Este trabajo también ha permitido detectar varios destellos en radio de apenas unos minutos de duración, que responden a episodios breves de actividad en la estrella, así como una llamarada estelar que se prolongó durante tres días y cuyo brillo en radio fue diez veces superior al habitual de la estrella.
“Estos resultados son también interesantes en lo que respecta a la posibilidad de que Proxima b albergue vida. Estas llamaradas de ondas de radio han debido de ser muy intensas para que pudiéramos detectarlas, y algunas se han prolongado varios días. Formas de vida como las de la Tierra posiblemente no podrían sobrevivir a este tipo de eventos”, apunta José Francisco Gómez (IAA-CSIC).
Cuatro años observando Próxima desde el IAA-CSIC
En 2016, la campaña de observación internacional RedDots, en la que participaba el IAA-CSIC, enfocó cuatro telescopios hacia la estrella más cercana a nosotros después del Sol, Próxima Centauri. Buscaban detectar el ligero tirón gravitatorio que un posible planeta ejercería sobre la estrella, que la obliga a dibujar una pequeña órbita y se traduce en oscilaciones en su luz. Así se halló Próxima b, un planeta con una masa mínima equivalente a 1,3 veces la terrestre y que gira en torno a Próxima Centauri cada 11.2 días dentro de la zona de habitabilidad, o la región en torno a una estrella en la que se producen las condiciones favorables para la existencia de agua líquida en superficie.
En 2017, investigadores del Instituto de Astrofísica de Andalucía (IAA-CSIC) descubrían un cinturón de polvo alrededor de Próxima mediante observaciones con el interferómetro ALMA. Semejante al Cinturón de Kuiper de nuestro Sistema Solar, representaba el hallazgo de material remanente de la formación del sistema planetario más próximo al nuestro.
En enero de 2020 se anunciaba el descubrimiento, también con la participación del IAA-CSIC, de un posible segundo planeta en torno a Próxima Centauri, gracias a los datos recopilados desde Chile con los espectrógrafos UVES y HARPS, pertenecientes al Observatorio Europeo Austral (ESO). Las observaciones, que abarcaban un total de diecisiete años, revelaron la presencia de una señal con un período de 5.2 años compatible con la existencia de un segundo planeta en torno a Próxima Centauri con una masa mínima de unas seis veces la de la Tierra.
"Un proyecto de esta clase solo se ha podido llevar a cabo porque especialistas del IAA en diversos ámbitos (física de las atmósferas de los planetas del Sistema Solar, física estelar, búsqueda y estudio de exoplanetas y procesos del medio interestelar) han aunado sus esfuerzos y conocimientos; esto incluye su experiencia tanto en la modelización teórica como en la realización de observaciones en diferentes longitudes de onda, desde radio hasta el óptico y el infrarrojo”, concluye Antxon Alberdi, director del IAA-CSIC y participante en el estudio.
.
.
.
.
.
.
En los últimos años se ha llevado a cabo un seguimiento exhaustivo de estrellas enanas rojas con el objetivo de encontrar exoplanetas orbitando a su alrededor. Estas estrellas poseen una temperatura efectiva comprendida entre 2400 y 3700 K (más de 2.000 grados más frías que el Sol) y una masa entre 0.08 y 0.45 masas solares. En este sentido, un equipo de investigadores ha descubierto una supertierra alrededor de GJ 740, una estrella enana fría situada a unos 36 años luz de la Tierra.
.
Recreación artística de la supertierra orbitando alrededor de la enana roja GJ 740. Crédito: Gabriel Pérez Díaz, SMM (IAC).
.
.
El planeta orbita su estrella con un período orbital de 2.4 días y posee una masa aproximada de 3 masas terrestres. Debido a la cercanía de la estrella al Sol y del planeta a su estrella, esta nueva supertierra podrá ser objeto de estudio en futuras investigaciones con los telescopios de gran diámetro al final de esta década. Los resultados del estudio se han publicado recientemente en la revista Astronomy & Astrophysics.
“Nos encontramos frente al planeta con el segundo periodo orbital más corto alrededor de este tipo de estrella. La masa y el periodo orbital de este planeta sugieren una composición rocosa, así como un radio estimado de 1.4 radios terrestres, que podrá ser confirmado con futuras observaciones del satélite TESS”, explica Borja Toledo Padrón, autor principal del descubrimiento. Los datos también indican la presencia de un posible segundo planeta con un período orbital de 9 años y una masa similar a la de Saturno (aproximadamente 100 masas terrestres), aunque su señal de velocidad radial podría estar causada por el ciclo magnético de la estrella (semejante al que experimenta el Sol), y por lo tanto son necesarios más datos para confirmar el origen de dicha señal.
La misión Kepler, reconocida por ser una de las más exitosas en la detección de exoplanetas a través del método de tránsitos (el cual consiste en la búsqueda de pequeñas variaciones periódicas en el brillo de la estrella causadas por tránsitos de los planetas que orbitan a su alrededor), ha descubierto un total de 156 nuevos planetas alrededor de estrellas frías. A partir de estos datos se ha estimado que este tipo de estrellas albergan en promedio 2.5 planetas con un período orbital inferior a 200 días. “La búsqueda de nuevos exoplanetas alrededor de estrellas frías está impulsada por la menor diferencia que existe entre la masa planetaria y la masa estelar en comparación con estrellas de otras clases espectrales (lo cual facilita la detección de señales planetarias), así como la gran abundancia de este tipo de estrellas en nuestra galaxia”, comenta Borja Toledo Padrón.
Las estrellas frías también son un objetivo ideal para la búsqueda de planetas a través del método de velocidad radial. Este método se basa en la detección de pequeñas variaciones en la velocidad debido a la atracción gravitacional que ejercen los planetas orbitando a su alrededor, a través de observaciones espectroscópicas. Desde el descubrimiento en 1998 de la primera señal en velocidad radial de un exoplaneta alrededor de una estrella fría, hasta la fecha, se han descubierto un total de 116 exoplanetas alrededor de esta clase de estrellas utilizando la técnica de la velocidad radial. “La mayor dificultad intrínseca de este método está relacionada con la intensa actividad magnética de este tipo de estrellas, la cual puede producir señales espectroscópicas muy similares a aquellas causadas por un exoplaneta”, declara Jonay I. González Hernández, investigador del Instituto de Astrofísica de Canarias (IAC) y coautor de este trabajo.
.
Trabajo de referencia | B. Toledo-Padrón, A. Suárez Mascareño, J. I. González Hernández, R. Rebolo, et al. “A super-Earth on a close-in orbit around the M1V star GJ 740”. Astronomy & Astrophysics, 7 de abril de 2021. DOI: 10.1051/0004-6361/202040099
.
.
.
.
.
Una nueva teoría explica el posible origen del objeto causante de la extinción masiva que acabó con los dinosaurios. La evidencia encontrada en el cráter Chicxulub sugiere que la roca estaba compuesta de condrita carbonosa.
.
Cometa acercándose hacia la Tierra.
.
.
El objeto causante del cráter Chicxulub, de más de 180 kilómetros de diámetro y 19 de profundidad, situado frente a la costa de México, produjo un devastador impacto que llevó a un final abrupto a los dinosaurios y a casi tres cuartas partes de las especies de plantas y animales que vivían en la Tierra.
El rompecabezas de su origen perdura en la actualidad: ¿dónde se originó el asteroide o cometa y cómo llegó a golpear a la Tierra? Ahora, los investigadores del Centro de Astrofísica Harvard-Smithsonian Amir Siraj y Avi Loeb creen tener la respuesta.
En un estudio publicado en ‘Scientific Reports‘, presentan una nueva teoría que podría explicar el origen y el viaje de este objeto catastrófico. Utilizando análisis estadístico y simulaciones gravitacionales, Siraj y Loeb calculan que una fracción significativa de cometas que se originan en la nube de Oort, en el borde del Sistema Solar, puede ser desviada por el campo gravitacional de Júpiter durante su órbita.
"El Sistema Solar actúa como una especie de máquina de pinball", explica Siraj. "Júpiter, el planeta más masivo, impulsa a los cometas entrantes a órbitas que los acercan mucho al sol". Al pasar cerca del Sol, los cometas pueden experimentar poderosas fuerzas que rompen pedazos de roca y, en última instancia, producen “metralla” cometaria.
"En un evento de ‘raspado solar’, la parte del cometa más cercana al Sol siente una atracción gravitacional más fuerte que la parte que está más lejos, lo que resulta en una fuerza de marea a través del objeto", explica Siraj. "Puede romperse en muchos pedazos pequeños y, lo que es más importante, en el viaje de regreso a la nube de Oort, hay una mayor probabilidad de que uno de esos fragmentos golpee la Tierra".
Una composición inusual
La evidencia encontrada en el cráter Chicxulub sugiere que la roca estaba compuesta de condrita carbonosa. La hipótesis de Siraj y Loeb también podría explicar esta composición inusual.
Una teoría habitual sobre el origen de Chicxulub afirma que el objeto se originó en el cinturón principal, que es una población de asteroides entre la órbita de Júpiter y Marte. Sin embargo, las condritas carbonáceas son raras entre los asteroides del cinturón principal, pero posiblemente están muy extendidas entre los cometas de períodos prolongados, lo que proporciona un apoyo adicional a la hipótesis del impacto cometario.
Otros cráteres similares muestran la misma composición. Esto incluye un objeto que golpeó hace unos 2.000 millones de años y dejó el cráter Vredefort en Sudáfrica, que es el cráter confirmado más grande en la historia de la Tierra, o el objeto que produjo el cráter Zhamanshin en Kazajstán, que es el cráter confirmado más grande del último millon de años.
Siraj y Loeb dicen que su hipótesis puede probarse estudiando más a fondo estos cráteres, otros como ellos e incluso los de la superficie de la Luna. Las misiones espaciales de muestreo de cometas también pueden ayudar. "Deberíamos ver fragmentos más pequeños que llegan a la Tierra con mayor frecuencia desde la nube de Oort", dice Loeb. "Espero que podamos probar la teoría teniendo más datos sobre cometas de períodos prolongados, obtener mejores estadísticas y tal vez ver evidencia de algunos fragmentos", concluye.
Loeb asegura que comprender esto no solo es crucial para resolver este misterio de la historia de la Tierra, sino que podría resultar fundamental si un evento similar amenazara al planeta.
.
.
.
.
.
Un investigador del Instituto de Astrofísica Canarias (IAC) lidera un trabajo con propuestas de “tecnomarcadores” -evidencias del uso de tecnología o actividad industrial en otras partes del Universo- para futuras misiones de la NASA.
.
Recreación artística de un hipotético exoplaneta con luces artificiales en el lado nocturno.
Crédito: Rafael Luis Méndez Peña/Sciworthy.com.
.
.
En el artículo se presentan varias ideas sobre los tecnomarcadores que indicarían la existencia de civilizaciones extraterrestres, desde las más mundanas, como podrían ser la presencia de contaminantes industriales en una atmósfera o enormes enjambres de satélites, hasta hipotéticas obras de megaingeniería espacial, como escudos de calor para combatir el cambio climático o esferas de Dyson para un aprovechamiento óptimo de la luz estelar. Algunas propuestas miran muy lejos en el espacio, hacia los confines de nuestra galaxia e incluso más allá, mientras que otras se fijan en nuestro propio sistema solar para considerar la posibilidad de sondas que hubieran sido enviadas en un pasado remoto. También se incluye en el estudio un nuevo formalismo para clasificar los tecnomarcadores en función de su “huella cósmica”, es decir, cuánto de visibles son a grandes distancias.
“No tenemos ni idea de si la inteligencia es algo muy común en el Universo o si, por el contrario, es extremadamente infrecuente”, señala Héctor Socas, investigador del Instituto de Astrofísica de Canarias (IAC), director del Museo de la Ciencia y el Cosmos, de Museos de Tenerife, y primer autor del artículo. “Así que no podemos saber si estas búsquedas tienen alguna probabilidad de éxito. No queda más remedio que buscar y ver qué encontramos, porque las implicaciones serían tremendas”.
“La búsqueda de tecnomarcadores se apoya en la tecnología que tenemos hoy en la Tierra y sus posibles extensiones futuras", apunta Jacob Haqq-Misra, coautor del artículo y coordinador de la organización de TechnoClimes 2020. "Esto no significa necesariamente que cualquier tecnología extraterrestre sea como la nuestra, pero imaginar extensiones plausibles de nuestra tecnología es un punto de partida para pensar en búsquedas astronómicas que sean realizables”.
Búsqueda de tecnomarcadores
En 1993, la NASA terminó de forma abrupta su incipiente programa de SETI, o búsqueda de inteligencia extraterrestre, cuando apenas acababa de empezar. Se trataba de dos ambiciosos proyectos complementarios, uno usando el radiotelescopio gigante de Arecibo, en Puerto Rico, y el otro con las antenas de la Deep Space Network, en California. Ahora, casi treinta años después, las cosas han cambiado y la agencia quiere reanudar los esfuerzos de búsqueda.
Durante la pasada década se han producido grandes avances en instrumentación astronómica que han llevado a una revolución en la ciencia para descubrir y estudiar exoplanetas. Los nuevos telescopios y los proyectos de misiones espaciales futuras permitirán, por primera vez, buscar los llamados biomarcadores, evidencias de vida en otros planetas. Muchos expertos consideran plausible que en los próximos años podamos asistir al descubrimiento de vida extraterrestre, aunque lo esperable es que se trate de formas de vida muy simples.
Dados los avances tecnológicos presentes y futuros, existen nuevas oportunidades para buscar tecnomarcadores. Por ello, la NASA ha decidido volver a involucrarse en la búsqueda de inteligencia extraterrestre, aprovechando las posibilidades de los nuevos observatorios espaciales actuales o previsibles en el futuro.
Estos temas, entre otros, estaban en la agenda de la reunión TechnoClimes 2020 patrocinada por la NASA en el Blue Marble Space Institute of Science (Seattle, EEUU). Con científicos de todo el mundo, tenía entre sus objetivos proponer a la agencia espacial nuevos desarrollos que permitan hacer avances futuros.
Finalmente, debido a la situación de pandemia por la COVID-19, la reunión se celebró de forma virtual, por videoconferencia. En ella participaron 53 investigadores de diferentes disciplinas y procedentes de 13 países diferentes para debatir diversos aspectos sobre la búsqueda de otras especies inteligentes.
.
.
.
.
.
.
Los astrónomos sospechan que lo más probable es que el cometa nunca haya pasado cerca de una estrella, por lo que sería una reliquia inalterada de la nube de gas y polvo en la que se formó.
.
Esta imagen fue obtenida con el instrumento FORS2, instalado en el Very Large Telescope de ESO, a finales de 2019, cuando el cometa 2I/Borisov pasó cerca del Sol. Mientras el telescopio seguía la trayectoria del comenta, y dado que viajaba a una velocidad vertiginosa (unos 175000 kilómetros por hora), las estrellas de fondo aparecen como rayas de luz. Los colores de estas rayas dan a la imagen un estilo “disco” y son el resultado de combinar observaciones en diferentes bandas de longitud de onda, resaltadas por los diversos colores de esta imagen compuesta. Crédito: ESO/O. Hainaut
.
.
2I/Borisov fue descubierto por el astrónomo aficionado Gennady Borisov en agosto de 2019 y, unas semanas más tarde, se confirmó que provenía de más allá del Sistema Solar. “2I/Borisov podría representar el primer cometa verdaderamente prístino jamás observado”, afirma Stefano Bagnulo, del Observatorio y Planetario de Armagh, en Irlanda del Norte (Reino Unido), quien dirigió el nuevo estudio publicado en Nature Communications. El equipo cree que el cometa nunca había pasado cerca de ninguna estrella antes de acercarse al Sol en 2019.
Bagnulo y sus colegas utilizaron el instrumento FORS2, instalado en el VLT de ESO, ubicado en el norte de Chile, para estudiar a 2I/Borisov en detalle utilizando una técnica llamada polarimetría [1]. Dado que esta técnica se utiliza regularmente para estudiar cometas y otros pequeños cuerpos de nuestro Sistema Solar, esto permitió al equipo comparar al visitante interestelar con nuestros cometas locales.
El equipo descubrió que 2I/Borisov tiene propiedades polarimétricas distintas a las de los cometas del Sistema Solar, con la excepción de Hale-Bopp. El cometa Hale-Bopp suscitó mucho interés por parte del público a finales de la década de 1990 al ser fácilmente visible a simple vista, y también porque era uno de los cometas más prístinos que los astrónomos habían visto. Antes de su última visita, se cree que Hale-Bopp pasó por nuestro Sol sólo una vez y, por lo tanto, apenas se había visto afectado por el viento solar y la radiación. Esto significa que era prístino, es decir, con una composición muy similar a la de la nube de gas y polvo en la que se formaron tanto él como el resto del Sistema Solar hace unos 4.500 millones de años.
Al analizar la polarización junto con el color del cometa para recabar pistas sobre su composición, el equipo concluyó que 2I/Borisov es de hecho aún más prístino que Hale-Bopp. Esto significa que contiene rastros inalterados de la nube de gas y polvo en la que se formó.
“El hecho de que los dos cometas sean tan similares sugiere que el entorno en el que se originó 2I/Borisov no es tan diferente en su composición del entorno del Sistema Solar temprano”, afirma Alberto Cellino, coautor del estudio e investigador del Observatorio Astrofísico de Torino, Instituto Nacional de Astrofísica (INAF) de Italia.
Olivier Hainaut, astrónomo de ESO en Alemania que estudia cometas y otros objetos cercanos a la Tierra –pero que no participó en este nuevo estudio–, está de acuerdo. “El resultado principal —que 2I/Borisov no es como cualquier otro cometa, exceptuando a Hale-Bopp— es muy robusto”, confirma, y agrega que “es muy plausible que se formaran en condiciones muy similares”.
"La llegada de 2I/Borisov desde el espacio interestelar representó la primera oportunidad de estudiar la composición de un cometa proveniente de otro sistema planetario y comprobar si el material de este cometa es, de alguna manera, diferente al de los cometas de nuestro propio sistema”, explica Ludmilla Kolokolova, de la Universidad de Maryland (EE.UU.), que participó en la investigación que se publica en Nature Communications.
Bagnulo espera que la comunidad astronómica tenga otra oportunidad, aún mejor si cabe, de estudiar en detalle un cometa errante antes del final de la década. “La ESA planea lanzar un Interceptor de Cometas en 2029, que tendrá la capacidad de llegar hasta otro objeto interestelar visitante si se descubre uno en una trayectoria adecuada”, afirma, refiriéndose a una próxima misión de la Agencia Espacial Europea.
La historia de un origen escondida en el polvo
Incluso sin una misión espacial, los astrónomos pueden utilizar los numerosos telescopios basados en tierra para obtener información sobre las diferentes propiedades de cometas errantes como 2I/Borisov. “Imagínese lo afortunados que fuimos de que, de forma casual, un cometa de un sistema a años luz de distancia simplemente pasara por nuestro barrio”, dice Bin Yang, astrónoma de ESO en Chile, quien también aprovechó el paso de 2I/Borisov a través de nuestro Sistema Solar para estudiar este misterioso cometa. Los resultados de su equipo se publican en la revista Nature Astronomy.
Yang y su equipo utilizaron datos de ALMA (Atacama Large Millimeter/submillimeter Array), del que ESO es socio, así como del VLT de ESO, para estudiar los granos de polvo de 2I/Borisov para recoger pistas sobre el nacimiento del cometa y las condiciones de su sistema originario.
Descubrieron que la coma de 2I/Borisov —una envoltura de polvo que rodea el cuerpo principal del cometa— contiene piedrecillas compactas, granos de aproximadamente un milímetro de tamaño o más grandes. Además, descubrieron que las cantidades relativas de monóxido de carbono y agua en el cometa cambiaron drásticamente a medida que se acercaba al Sol. El equipo, que también incluye a Olivier Hainaut, afirma que esto indica que el cometa está compuesto por materiales que se formaron en diferentes lugares de su sistema planetario.
Las observaciones de Yang y su equipo sugieren que la materia del sistema planetario en el que se formó 2I/Borisov se mezcló desde la zona cercana a su estrella hasta un área más alejada, tal vez debido a la existencia de planetas gigantes, cuya fuerte gravedad agita la materia presente en el sistema. Los astrónomos creen que un proceso similar pudo tener lugar al principio de la vida de nuestro Sistema Solar.
Aunque 2I/Borisov fue el primer cometa errante en pasar por el Sol, no fue el primer visitante interestelar. El primer objeto interestelar que se observó pasando por nuestro Sistema Solar fue ʻOumuamua, otro objeto estudiado con el VLT de ESO en 2017. Originalmente clasificado como un cometa, ʻOumuamua fue reclasificado más tarde como un asteroide, ya que carecía de coma.
.
Nota | [1] La polarimetría es una técnica para medir la polarización de la luz. La luz se polariza, por ejemplo, cuando pasa por ciertos filtros, como las lentes de gafas de sol polarizadas o el material cometario. Al estudiar las propiedades de la luz solar polarizada por el polvo de un cometa, los investigadores pueden obtener información sobre la física y química de los cometas.
.
.
.
.
Investigadores del Instituto de Astrofísica de Canarias (IAC) confirman la primera detección de una galaxia reliquia con el Telescopio Espacial Hubble. Los resultados de esta investigación se publican hoy en la revista 'Nature'
.
Galaxia masiva reliquia NGC1277. Crédito: Michael Beasley e Ignacio Trujillo
.
Se calcula que solo una de cada mil galaxias masivas es una reliquia del Universo primitivo y conserva intactas las propiedades que tenía cuando se formó hace miles de millones años. Por eso, cuando los investigadores del Instituto de Astrofísica de Canarias (IAC) y la Universidad de La Laguna (ULL) Michael Beasley e Ignacio Trujillo localizaron esta rara avis, solicitaron tiempo de observación con el Telescopio Espacial Hubble para observar los cúmulos globulares que la rodeaban y así confirmar lo que ya proponían los datos que habían logrado con telescopios terrestres.
Los cúmulos globulares son agrupaciones de estrellas que flotan alrededor de las galaxias y se formaron junto a éstas durante su nacimiento. Existen dos tipos de poblaciones de cúmulos globulares: los rojos, que nacen con las galaxias masivas, se encuentran cerca de su centro y tienen un alto contenido de elementos más pesados que el Helio; y los azules con menor porcentaje metálico y que se encuentran alrededor de las galaxias masivas como consecuencia de haber absorbido otras galaxias más pequeñas.
Analizar esos cúmulos facilita información sobre la historia de las galaxias. Los resultados de la investigación que publica hoy Nature han mostrado que la galaxia NGC 1277 solo posee los cúmulos globulares rojos que se formaron con ella en su nacimiento. Desde entonces, se ha mantenido inalterada. “Los cúmulos globulares son piezas muy sensibles de la historia de formación de las galaxias”, explica Michael Beasley, primer autor del artículo, quien también aclara que “es la primera vez que se observa una galaxia tan masiva con tan pocos cúmulos azules”.
La galaxia NGC 1277 está compuesta por un millón de millones de estrellas y recibe su nombre del Nuevo Catálogo General de Nebulosas y Cúmulos de Estrellas. Se encuentra en el área central del Cúmulo de Perseo, la mayor concentración de galaxias próxima a la Vía Láctea y su cercanía, a 70 megaparsec (225 millones de años luz), la convierte en el objeto ideal para analizar desde cerca una galaxia que ha permanecido intacta desde las edades más tempranas del Universo. “La galaxia, NGC 1277, nos ofrece una oportunidad única para estudiar una galaxia “primitiva” en el Universo Local”, añade Ignacio Trujillo, otro de los autores del artículo.
Cuando esta galaxia nació, creaba 1.000 estrellas al año, mientras que, por sus características, la Vía Láctea forma, en la actualidad, solo una estrella al año.
El motivo por el que los investigadores piensan que esta galaxia masiva ha mantenido su forma original y su composición intacta durante todo este tiempo es porque se formó como satélite de la galaxia central del cúmulo de Perseo, la cual absorbió cualquier material que podría haber caído sobre NGC 1277 y provocado que hubiese evolucionado de otra manera. Sin embargo, ahora orbita alrededor de esta a una velocidad de 1.000 kilómetros por segundo.
Los autores plantean pedir más tiempo del Telescopio Espacial Hubble, y en su sucesor, el Telescopio Espacial James Webb, para observar los sistemas de cúmulos globulares de más galaxias reliquias..
.
Referencia bibliográfica | BEASLEY, Michael A. et al. “A single population of red globular clusters around the massive compact galaxy NGC 1277”, Nature. DOI: 10.1038/nature25756 .
.
.
.
.
La detección, en la que ha participado un investigador del IAC, fue posible con la técnica de tránsitos utilizando la red de telescopios de MEarth Sur y el espectrógrafo HARPS en un telescopio del Observatorio de La Silla, en Chile. Estos resultados se han publicado en la revista Nature.
.
Esta ilustración muestra al exoplaneta LHS 1140b, que orbita alrededor de una estrella enana roja, a 40 años luz de la Tierra, y que podría hacerse con el título de "mejor lugar para buscar signos de vida más allá del Sistema Solar". Este mundo es un poco más grande y más masivo que la Tierra y es probable que haya conservado la mayor parte de su atmósfera. Crédito: ESO/spaceengine.org
.
La supertierra recién descubierta, denominada LHS 1140b, orbita en la zona habitable de una débil estrella enana roja llamada LHS 1140, en la constelación de Cetus (el monstruo marino). Las enanas rojas son mucho más pequeñas y más frías que el Sol y, aunque LHS 1140b está diez veces más cerca de su estrella que la Tierra del Sol, sólo recibe alrededor de la mitad de luz de su estrella que la Tierra y se encuentra en medio de la zona habitable. Desde la Tierra, la órbita se ve casi de canto y, cuando el exoplaneta pasa delante de su estrella en cada órbita, bloquea un poco de su luz cada 25 días.
"Es el exoplaneta más interesante que he visto en la última década", afirma el autor principal, Jason Dittmann, del Centro de Astrofísica Harvard-Smithsonian (Cambridge, EE.UU.). "Es el objetivo perfecto para llevar a cabo una de las misiones más grandes de la ciencia: buscar evidencias de vida más allá de la Tierra".
Las condiciones actuales de la enana roja son particularmente favorables, ya que LHS 1140b gira más lentamente y emite menos radiación de alta energía que otras estrellas de baja masa similares. Para la vida tal y como la conocemos, un planeta debe tener agua líquida en su superficie y retener una atmósfera. En este caso, el gran tamaño del planeta implica que, hace millones de años, podría haber existido un océano de magma en su superficie. Este océano hirviente de lava podría haber proporcionado vapor a la atmósfera mucho después de que la estrella se hubiese calmado, alcanzando su brillo actual y constante, reponiendo así el agua que podría haberse perdido por la acción de la estrella en su fase más activa.
Inicialmente, el descubrimiento se hizo con la instalación MEarth, que detectó los primeros indicios: cambios característicos en la luz que se dan cuando el exoplaneta pasa delante de la estrella. Posteriormente, se hizo un seguimiento crucial con el instrumento HARPS de ESO (High Accuracy Radial velocity Planet Searcher, buscador de planetas de alta precisión por el método de velocidad radial), confirmando la presencia de la supertierra. HARPS también ayudó a establecer el periodo orbital y permitió deducir la masa y la densidad del exoplaneta.
Los astrónomos estiman que el planeta tiene al menos 5.000 millones de años. También deducen que tiene un diámetro 1,4 veces más grande que el de la Tierra (casi 18.000 kilómetros). Pero con una masa unas siete veces mayor que la de la Tierra y, por lo tanto, una densidad mucho más alta, esto implica que, probablemente, el exoplaneta está hecho de roca con un núcleo denso de hierro.
 |
Recreación artística del exoplaneta. M. Weiss/CfA |
Esta supertierra puede ser el mejor candidato hasta el momento para futuras observaciones cuyo objetivo sea estudiar y caracterizar, en caso de tenerla, la atmósfera del exoplaneta. Dos de los miembros europeos del equipo, Xavier Delfosse y Xavier Bonfils, ambos del CNRS y el IPAG, en Grenoble (Francia), concluyen: "Para la futura caracterización de planetas en la zona habitable, el sistema LHS 1140 podría ser un objetivo aún más importante que Proxima b o TRAPPIST-1. ¡Este ha sido un año extraordinario para el descubrimiento de exoplanetas!".
En concreto, con las observaciones que se llevarán a cabo próximamente con el Telescopio Espacial Hubble de la NASA/ESA, se podrá determinar exactamente cuánta radiación de alta energía cae sobre LHS 1140b, por lo que se podrá delimitar su capacidad para albergar vida.
En el futuro, cuando entren en funcionando nuevos telescopios como el ELT (Extremely Large Telescope) de ESO, es probable que seamos capaces de hacer observaciones detalladas de las atmósferas de exoplanetas y LHS 1140b es un candidato excepcional para este tipo de estudios..
.
.
.
.
El cuásar QSO B0218 + 357 fue observado gracias a la lente gravitacional que produjo una galaxia ubicada entre el objeto y la Tierra, fenómeno predicho por la teoría de la Relatividad General de Einstein.
.
The MAGIC Telescope. Fotografía | Robert Wagner
.
En un estudio publicado el pasado viernes en la revista Astronomy & Astrophysics, científicos de la colaboración internacional de los telescopios MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope), ubicados en el Observatorio del Roque de los Muchachos, en Garafía (La Palma), y entre los que se encuentra investigadores del Instituto de Astrofísica de Canarias (IAC), han anunciado el descubrimiento de la emisión de rayos gamma más distante hasta la fecha. El descubrimiento ha sido posible gracias a la lente gravitacional originada por una galaxia muy masiva entre el cuásar y la Tierra, que “repitió” la luz producida por la fuente.
En dicho fenómeno, predicho por la teoría de la Relatividad General de Einstein, la luz se desvía cuando pasa cerca de un objeto muy masivo. Para un observador distante, la masa concentra la luz como una lente gigante, resultando una imagen mucho más brillante, aunque distorsionada, de la fuente y permitiendo ver objetos lejanos que de otra manera podrían ser demasiado débiles para ser detectados. Al igual que en una lente, la luz puede atravesarla siguiendo caminos ligeramente diferentes. A escalas cósmicas, esto quiere decir que los fotones que viajan a lo largo de cada una de esas líneas de visión llegan en momentos ligeramente distintos. Además, si la fuente es variable, la luz guarda la información del momento en que es emitida y cuando llega a la Tierra millones de años después, se verá cómo era el objeto en ese preciso instante. Según la teoría, este hecho no debería depender de la energía de los fotones y de ahí que estas observaciones sean especialmente importantes.
QSO B0218 + 357 es un cuásar, un objeto muy compacto y energético, asociado a un agujero negro supermasivo en el núcleo de una galaxia. Hace más de 7.000 millones de años se produjo una gigantesca explosión en este objeto que originó una emisión intensa de rayos gamma, la luz más energética que se conoce. En su largo viaje hacia la Tierra, estos fotones pasaron cerca de una galaxia situada entre el cuásar y la Tierra, B0218 + 357G, más de mil millones de años después. Al pasar y ser desviados, los fotones que viajaban por el camino más corto llegaron finalmente a la Tierra el 14 de julio de 2014 y se observaron con el Telescopio de Área Grande (Large Area Telescope) a bordo del satélite Fermi, que cartografía todo el cielo cada tres horas. La detección de este estallido de rayos gamma alertó a la comunidad astronómica internacional y los telescopios de todo el mundo apuntaron a QSO B0218 + 357 para averiguar qué había ocurrido en esa lejana explosión cósmica.
Los astrónomos de los telescopios MAGIC intentaron observarlo, pero en ese momento hubo luna llena en La Palma, lo que impidió su funcionamiento. Sin embargo, tuvieron una segunda oportunidad. A partir de las mediciones anteriores del cuásar realizadas por Fermi y otros radiotelescopios en 2012, los científicos sabían que los fotones que viajan a lo largo del camino más largo deberían llegar unos 11 días más tarde. "En otras palabras, la naturaleza nos daría una segunda oportunidad para observar el mismo fenómeno", afirma el miembro de la Colaboración MAGIC Julian Sitarek, director del estudio, investigador de la Universidad de Łódz (Polonia) y ex miembro del Institut de Fisica d'Altes Energías (IFAE) en Barcelona cuando se inició este proyecto. Y continúa: "Cuando llegó el momento, los telescopios MAGIC apuntaron a QSO B0218 + 357 y, de acuerdo con la estimación, pudimos observarlo, convirtiéndose en el objeto más distante detectado en rayos gamma de muy alta energía hasta la fecha". A este hecho se le suma la dificultad de que este tipo de emisiones tienen bastante probabilidad de perderse durante el proceso al interactuar con los numerosos fotones de baja energía emitidos por galaxias y estrellas.
Con esta observación, MAGIC ha duplicado el rango de visibilidad del Universo en rayos gamma de muy alta energía. La observación de la señal retardada de QSO B0218 + 357 mostró, por primera vez, que estos fotones muy enérgicos también son desviados como indica la Teoría Relatividad General, y que al ser recibidos en el tiempo estimado podrían descartar algunas teorías de la estructura del vacío. Por el momento, esta observación demuestra una nueva capacidad de los observatorios de rayos gamma de muy alta energía y pone de relieve el potencial de la próxima Red de Telescopios Cherenkov (CTA, por sus siglas en inglés.).
Telescopios MAGIC
MAGIC es un instrumento que mide rayos gamma de muy alta energía situado en Observatorio del Roque de los Muchachos, en Garafía (La Palma). Consiste en dos telescopios Cherenkov de 17 m de diámetro y son actualmente uno de los tres principales instrumentos atmosféricos Cherenkov en el mundo. Está diseñado para detectar rayos gamma de decenas de miles de millones a decenas de billones de veces más energéticos que la luz visible. La construcción y explotación científica de MAGIC es el fruto de una gran colaboración internacional en la que participan cerca de 160 investigadores de Alemania, España, Italia, Suiza, Polonia, Finlandia, Bulgaria, Croacia, India y Japón. .
.
.
.
.
.
.