Mostrando las entradas para la consulta European Southern Observatory ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas

Un nuevo exoplaneta recién descubierto podría ser el mejor candidato para la búsqueda de señales de vida


La detección, en la que ha participado un investigador del IAC, fue posible con la técnica de tránsitos utilizando la red de telescopios de MEarth Sur y el espectrógrafo HARPS en un telescopio del Observatorio de La Silla, en Chile. Estos resultados se han publicado en la revista Nature.
.
Esta ilustración muestra al exoplaneta LHS 1140b, que orbita alrededor de una estrella enana roja, a 40 años luz de la Tierra, y que podría hacerse con el título de "mejor lugar para buscar signos de vida más allá del Sistema Solar". Este mundo es un poco más grande y más masivo que la Tierra y es probable que haya conservado la mayor parte de su atmósfera. Crédito: ESO/spaceengine.org
.

La supertierra recién descubierta, denominada LHS 1140b, orbita en la zona habitable de una débil estrella enana roja llamada LHS 1140, en la constelación de Cetus (el monstruo marino). Las enanas rojas son mucho más pequeñas y más frías que el Sol y, aunque LHS 1140b está diez veces más cerca de su estrella que la Tierra del Sol, sólo recibe alrededor de la mitad de luz de su estrella que la Tierra y se encuentra en medio de la zona habitable. Desde la Tierra, la órbita se ve casi de canto y, cuando el exoplaneta pasa delante de su estrella en cada órbita, bloquea un poco de su luz cada 25 días.

"Es el exoplaneta más interesante que he visto en la última década", afirma el autor principal, Jason Dittmann, del Centro de Astrofísica Harvard-Smithsonian (Cambridge, EE.UU.). "Es el objetivo perfecto para llevar a cabo una de las misiones más grandes de la ciencia: buscar evidencias de vida más allá de la Tierra".

Las condiciones actuales de la enana roja son particularmente favorables, ya que LHS 1140b gira más lentamente y emite menos radiación de alta energía que otras estrellas de baja masa similares. Para la vida tal y como la conocemos, un planeta debe tener agua líquida en su superficie y retener una atmósfera. En este caso, el gran tamaño del planeta implica que, hace millones de años, podría haber existido un océano de magma en su superficie. Este océano hirviente de lava podría haber proporcionado vapor a la atmósfera mucho después de que la estrella se hubiese calmado, alcanzando su brillo actual y constante, reponiendo así el agua que podría haberse perdido por la acción de la estrella en su fase más activa.

Inicialmente, el descubrimiento se hizo con la instalación MEarth, que detectó los primeros indicios: cambios característicos en la luz que se dan cuando el exoplaneta pasa delante de la estrella. Posteriormente, se hizo un seguimiento crucial con el instrumento HARPS de ESO (High Accuracy Radial velocity Planet Searcher, buscador de planetas de alta precisión por el método de velocidad radial), confirmando la presencia de la supertierra. HARPS también ayudó a establecer el periodo orbital y permitió deducir la masa y la densidad del exoplaneta.

Los astrónomos estiman que el planeta tiene al menos 5.000 millones de años. También deducen que tiene un diámetro 1,4 veces más grande que el de la Tierra (casi 18.000 kilómetros). Pero con una masa unas siete veces mayor que la de la Tierra y, por lo tanto, una densidad mucho más alta, esto implica que, probablemente, el exoplaneta está hecho de roca con un núcleo denso de hierro.

Recreación artística del exoplaneta. M. Weiss/CfA
Esta supertierra puede ser el mejor candidato hasta el momento para futuras observaciones cuyo objetivo sea estudiar y caracterizar, en caso de tenerla, la atmósfera del exoplaneta. Dos de los miembros europeos del equipo, Xavier Delfosse y Xavier Bonfils, ambos del CNRS y el IPAG, en Grenoble (Francia), concluyen: "Para la futura caracterización de planetas en la zona habitable, el sistema LHS 1140 podría ser un objetivo aún más importante que Proxima b o TRAPPIST-1. ¡Este ha sido un año extraordinario para el descubrimiento de exoplanetas!".

En concreto, con las observaciones que se llevarán a cabo próximamente con el Telescopio Espacial Hubble de la NASA/ESA, se podrá determinar exactamente cuánta radiación de alta energía cae sobre LHS 1140b, por lo que se podrá delimitar su capacidad para albergar vida.

En el futuro, cuando entren en funcionando nuevos telescopios como el ELT (Extremely Large Telescope) de ESO, es probable que seamos capaces de hacer observaciones detalladas de las atmósferas de exoplanetas y LHS 1140b es un candidato excepcional para este tipo de estudios.
.
.
.
.
.
ETIQUETASAstronomíaEuropean Southern ObservatoryESO

Un estallido estelar nos permite ver la línea de nieve del agua


El conjunto de antenas ALMA ha realizado la primera observación en la que se logra resolver una línea de nieve del agua dentro de un disco protoplanetario. Esta línea marca el lugar en el que la temperatura en el disco que rodea a una estrella joven es lo suficientemente baja como para permitir la formación de nieve.
.
Ilustración de la línea de nieve del agua alrededor de la joven estrella V883 Orionis, tal y como la ha detectado ALMA.
Crédito: A. Angelich (NRAO/AUI/NSF)/ALMA (ESO/NAOJ/NRAO)
.

Las estrellas jóvenes a menudo están rodeadas por densos discos giratorios de gas y polvo, conocidos como discos protoplanetarios, de los cuales nacen los planetas. El calor de una típica estrella joven de tipo solar hace que el agua que hay dentro de los discos protoplanetarios esté en forma de gas hasta distancias de alrededor de 3 UA de la estrella [1] — menos de 3 veces la distancia media entre la Tierra y el Sol — o alrededor de 450 millones de kilómetros [2]. Además, debido a la presión extremadamente baja, las moléculas de agua pasan directamente del estado gaseoso a formar una pátina de hielo sobre granos de polvo y otras partículas. La región de los discos protoplanetarios en la que tienen lugar las transiciones entre la fase de gas y la sólida se conoce como la línea de nieve [3].

Pero la estrella V883 Orionis es inusual. Un impactante aumento en su brillo ha empujado la línea de nieve del agua a una distancia de alrededor de 40 UA (unos 6.000 millones de kilómetros, o aproximadamente el tamaño de la órbita del planeta enano Plutón en nuestro Sistema Solar). Este enorme incremento, combinado con la resolución del ALMA en línea de base larga [4], ha permitido a un equipo dirigido por Lucas Cieza (Millennium ALMA Disk Nucleus y Universidad Diego Portales, Santiago, Chile) hacer las primeras observaciones en las que se logra resolver una línea de nieve del agua en un disco protoplanetario.

El súbito aumento de brillo experimentado por V883 Orionis es un ejemplo de lo que ocurre cuando grandes cantidades de material del disco que rodea una estrella joven caen sobre su superficie. V883 Orionis es sólo un 30% más masiva que el Sol pero, gracias a este estallido, actualmente es 400 veces más luminosa y mucho más caliente [5].

El autor principal, Lucas Cieza, explica: "Las observaciones de ALMA fueron una sorpresa para nosotros. Nuestras observaciones se diseñaron para obtener imágenes de la fragmentación del disco que lleva a la formación del planeta. No vimos nada de eso; en cambio, encontramos lo que parece un anillo a 40 UA. Esto ilustra bien el poder transformador de la ALMA, que brinda resultados interesantes aunque no sean los que estábamos buscando."

La extraña idea de nieve orbitando en el espacio es fundamental para la formación de planetas. La presencia de hielo de agua regula la eficacia de la coagulación de granos de polvo (el primer paso en la formación de planetas). Se cree que los planetas rocosos y pequeños, como el nuestro, se forman dentro de la línea de nieve, donde el agua se evapora. Fuera de la línea de nieve del agua, la presencia de hielo de agua permite la rápida formación de bolas de nieve cósmicas, que finalmente formarán enormes planetas gaseosos como Júpiter.

Descubrir que estos estallidos pueden empujar la línea de nieve del agua a cerca de diez veces su radio típico es muy importante para el desarrollo de buenos modelos de formación planetaria. Se cree que este tipo de explosiones son una etapa en la evolución de la mayoría de los sistemas planetarios, así que esta puede ser la primera observación de un evento común. En ese caso, esta observación de ALMA podría contribuir significativamente a una mejor comprensión de cómo se formaron y evolucionaron los planetas en todo el universo.
.
NOTAS
.
[1] Una UA, o una unidad astronómica, es la distancia media entre la Tierra y el Sol, aproximadamente 149,6 millones de km. Esta unidad se utiliza típicamente para describir distancias medidas dentro del Sistema Solar y en los sistemas planetarios alrededor de otras estrellas.

[2] Esta línea estaba entre las órbitas de Marte y Júpiter durante la formación del Sistema Solar, por lo tanto, los planetas rocosos (Mercurio, Venus, Tierra y Marte) se formaron dentro de la línea, y los planetas gaseosos (Júpiter, Saturno, Urano y Neptuno) se formaron fuera.

[3] Las líneas de nieve de otras moléculas, como monóxido de carbono y metano, se han observado previamente con ALMA, a distancias de más de 30 UA de la protoestrella en otros discos protoplanetarios. El agua se congela a una temperaturas relativamente altas y esto significa que la línea de nieve del agua está, generalmente, demasiado cerca de la protoestrella como para poder observarla directamente.

[4] La resolución es la capacidad de discernir que dos objetos están separados. Para el ojo humano, varias antorchas brillantes a cierta distancia parecería un solo punto brillante y sólo acercándonos distinguiríamos cada antorcha individualmente. El mismo principio se aplica a los telescopios y, estas nuevas observaciones, han aprovechado la exquisita resolución de ALMA en su modalidad de línea de base larga. La resolución del ALMA en la distancia a la que se encuentra V883 Orionis es aproximadamente de 12 UA — suficiente para resolver la línea de nieve del agua a 40 UA en este sistema explosivo, pero no para una típica estrella joven.

[5] Las estrellas como V883 Orionis se clasifican como estrellas FU Orionis, por la primera estrella descubierta con este comportamiento. Las explosiones pueden durar cientos de años.
.
.
.
.
.
ETIQUETASAstronomíaEuropean Southern ObservatoryESO

Es probable que los planetas de TRAPPIST-1 tengan agua en abundancia


Un nuevo estudio ha revelado que, la composición de los siete planetas que orbitan a la cercana estrella enana ultrafría TRAPPIST-1, es básicamente rocosa y que, potencialmente, algunos podrían albergar más agua que la Tierra. La densidad de los planetas, que ahora se conoce con mucha más precisión, sugiere que algunos de ellos podrían tener hasta un 5% de su masa en forma de agua, aproximadamente 250 veces más que los océanos de la Tierra.
.
Esta ilustración muestra varios de los planetas que orbitan a la estrella enana roja ultrafría TRAPPIST-1. Nuevas observaciones, combinadas con sofisticados análisis, han proporcionado estimaciones de las densidades de los siete planetas del tamaño de la Tierra y sugieren que son ricos en materiales volátiles, tratándose probablemente de agua. Ilustración: ESO/M. Kornmesser
.
Los planetas que hay alrededor de la débil estrella roja TRAPPIST-1, a sólo 40 años luz de la Tierra, fueron detectados por primera vez en 2016 con el Telescopio TRAPPIST-sur, instalado en el Observatorio La Silla de European Southern Observatory (ESO). Durante el año siguiente se llevaron a cabo otras observaciones, tanto desde telescopios terrestres, como el Very Large Telescope de ESO, como con el Telescopio Espacial Spitzer de la NASA, revelando que no había menos de siete planetas en el sistema, cada uno de un tamaño parecido al de la Tierra. Se llaman TRAPPIST-1b, c, d, e, f, g y h, en el sentido en el que aumenta la distancia de la estrella central.

Ahora se han llevado a cabo más observaciones, tanto con telescopios basados en tierra, incluyendo la instalación SPECULOOS, casi completa, en el Observatorio Paranal de ESO, como desde el Telescopio Espacial Spitzer y el Telescopio Espacial Kepler de la NASA. Un equipo de científicos, liderado por Simon Grimm, de la Universidad de Berna (Suiza), ha aplicado métodos de modelado informático muy complejos a los datos disponibles y ha determinado las densidades de los planetas con mucha más precisión.

Simon Grimm explica cómo se determinan las masas: “Los planetas de TRAPPIST-1 están tan juntos que interfieren entre sí gravitatoriamente, por lo que, cuando pasan frente a la estrella, hay un ligero cambio en los tiempos. Estos cambios dependen de las masas de los planetas, sus distancias y otros parámetros orbitales. Con un modelo informático simulamos las órbitas de los planetas hasta que los tránsitos calculados concuerdan con los valores observados y de ahí derivamos las masas planetarias”.

Eric Agol, miembro del equipo, nos habla el significado de este hallazgo: “Una meta, perseguida desde hace un tiempo dentro del campo del estudio de los exoplanetas, ha sido conocer la composición de los planetas que son similares a la Tierra en tamaño y temperatura. El descubrimiento de TRAPPIST-1 y las capacidades de las instalaciones de ESO en Chile y del Telescopio Espacial Spitzer de la NASA en órbita, lo han hecho posible. ¡Por primera vez tenemos una pista que nos dice de qué están hechos los exoplanetas del tamaño de la Tierra!”.

Las medidas de densidad, combinadas con los modelos de las composiciones de los planetas, sugieren firmemente que los siete planetas TRAPPIST-1 no son mundos rocosos estériles. Parecen contener cantidades significativas de material volátil, probablemente agua, que alcanza hasta un 5% de la masa del planeta en algunos casos, lo cual supone una gran cantidad: en comparación, ¡solo el 0,02% de la masa de la Tierra es agua!

“Las densidades, pese a ser pistas importantes sobre la composición de los planetas, no dicen nada de habitabilidad. Sin embargo, nuestro estudio es un paso importante mientras seguimos explorando si estos planetas podrían sustentar vida”, afirmó Olivier Brice Demory, coautor en la Universidad de Berna.

TRAPPIST-1b y c, los planetas más interiores, parece tener núcleos rocosos y estar rodeados de atmósferas mucho más gruesas que la de la Tierra. Por su parte, TRAPPIST-1d es el más ligero de los planetas, con un 30 por ciento de la masa de la Tierra. Los científicos no están seguros de si tiene una gran atmósfera, un océano o una capa de hielo.

El equipo de investigación se sorprendió por el hecho de que TRAPPIST-1e sea el único planeta del sistema un poco más denso que la Tierra, lo que sugiere que puede tener un núcleo más denso de hierro y que no necesariamente tiene una atmósfera espesa, un océano o una capa de hielo. Resulta misterioso que TRAPPIST-1e parezca tener una composición mucho más rocosa que el resto de los planetas. En términos de tamaño, densidad y de la cantidad de radiación que recibe de su estrella, es el planeta más similar a la Tierra.

TRAPPIST-1f, g y h están lo suficientemente lejos de la estrella anfitriona como para que el agua pueda congelarse y formar hielos sobre sus superficies. Si tienen atmósferas delgadas, sería improbable que contuvieran las moléculas pesadas que encontramos en la Tierra, como el dióxido de carbono.

“Es interesante que los planetas más densos no sean los que están más cerca de la estrella, y que los planetas más fríos no tengan atmósferas gruesas”, señala la coautora del estudio Caroline Dorn, de la Universidad de Zúrich (Suiza).

El sistema TRAPPIST-1 seguirá siendo un foco de intenso escrutinio por parte de numerosas instalaciones terrestres y espaciales, incluyendo el ELT (Extremely Large Telescope) de ESO y el Telescopio Espacial James Webb de NASA/ESA/CSA.

Los equipos de investigación también están invirtiendo esfuerzos en buscar otros planetas alrededor de estrellas rojas débiles como TRAPPIST-1. Como miembro de este grupo, Michaël Gillon explica: “Este resultado pone de relieve el enorme interés de explorar estrellas enanas ultrafrías cercanas — como TRAPPIST-1 — para el tránsito de planetas terrestres. Ese es exactamente el objetivo de SPECULOOS, nuestro nuevo buscador de exoplanetas, que está a punto de iniciar operaciones en el Observatorio Paranal de ESO, en Chile”.
.
.
.
.
.
ETIQUETASAstronomíaEuropean Southern ObservatoryESO

Un sorprendente planeta con tres soles

.
Un equipo de astrónomos ha obtenido una imagen del primer planeta encontrado en una amplia órbita dentro de un sistema triple de estrellas. Se supone que la órbita de un planeta de este tipo debería ser inestable pero, de alguna manera, este ha permanecido en él. Esta inesperada observación sugiere que este tipo de sistemas puede ser más común de lo que se pensaba.
.
Esta ilustración muestra una visión del sistema estelar triple HD 131399 visto desde una posición cercana al planeta gigante que orbita al sistema. El planeta es conocido como HD 131399Ab y aparece en la parte baja-izquierda de la imagen. Crédito: ESO/L. Calçada
.

El planeta natal de Luke Skywalker, Tatooine (en la saga de Star Wars, La Guerra de las Galaxias), era un extraño mundo con dos soles en el cielo. Pero ahora los astrónomos han encontrado un planeta en un sistema aún más exótico, en el que un observador experimentaría la luz constante del día o podría disfrutar de amaneceres y puestas de sol triples cada día, dependiendo de las estaciones, más largas que una vida humana.

Este mundo ha sido descubierto por un equipo de astrónomos liderado por la Universidad de Arizona (Estados Unidos), usando imagen directa en el VLT (Very Large Telescope) de ESO, en Chile. El planeta, HD 131399Ab [1] no se parece a ningún otro mundo conocido —su órbita alrededor de la más brillante de las tres estrellas es la más grande descubierta hasta ahora dentro de un sistema estelar múltiple. Tales órbitas suelen ser inestables debido a la compleja y cambiante atracción gravitatoria de las otras dos estrellas del sistema, y se pensaba que la existencia de planetas en órbitas estables era muy poco probable.

Situado a unos 320 años luz de la Tierra, en la constelación de Centauro, HD 131399Ab tiene unos 16 millones de años de edad, lo que lo convierte también en uno de los exoplanetas más jóvenes descubiertos hasta la fecha y en uno de los pocos planetas de los que se ha obtenido una imagen directa. Con una temperatura de alrededor de 580 grados centígrados y una masa estimada de cuatro masas de Júpiter, es también uno de los exoplanetas más fríos y menos masivos captados con imagen directa.

"HD 131399Ab es uno de los pocos exoplanetas que han sido captados con imagen directa y es el primero con una configuración dinámica tan interesante", afirma Daniel Apai, de la Universidad de Arizona (EE.UU.) y uno de los coautores del nuevo artículo.

"Aproximadamente durante la mitad de la órbita del planeta, que dura 550 años terrestres, pueden verse tres estrellas en el cielo; las dos más débiles están siempre mucho más cerca la una de la otra y cambian su aparente separación con respecto de la estrella más brillante a lo largo del año", añade Kevin Wagner, primer autor del artículo y descubridor de HD 131399Ab [2].

Kevin Wagner, estudiante de doctorado en la Universidad de Arizona, identificó al planeta entre cientos de planetas candidatos y dirigió las observaciones de seguimiento para verificar su naturaleza.

El planeta también marca el primer descubrimiento de un exoplaneta con el instrumento SPHERE, instalado en el VLT. SPHERE es sensible a la luz infrarroja, lo que le permite detectar las firmas de calor de los planetas jóvenes. Cuenta además con sofisticadas funciones que corrigen perturbaciones atmosféricas y bloquean la luz de las estrellas del sistema, ya que, de otro modo, su luz nos cegaría.

Aunque serán necesarias más observaciones a largo plazo para determinar con precisión la trayectoria del planeta entre sus estrellas anfitrionas, las observaciones y simulaciones parecen sugerir la siguiente hipótesis: se estima que la estrella más brillante es un ochenta por ciento más masiva que el Sol y dobla a HD 131399A, que a su vez está orbitada por las estrellas menos masivas, B y C, a unas 300 ua (una ua o unidad astronómica es igual a la distancia media entre la Tierra y el Sol). Al mismo tiempo, B y C giran una alrededor de la otra, separadas por una distancia aproximadamente igual a la que hay entre el Sol y Saturno.

En este escenario, el planeta HD 131399Ab viaja alrededor de la estrella A en una órbita alrededor de dos veces la de Plutón, si se compara con el Sistema Solar, y pone al planeta en una distancia de un tercio de la separación entre la estrella A y el par B/C. Los autores señalan que se pueden dar varios escenarios, y el veredicto de la estabilidad a largo plazo del sistema tendrá que esperar observaciones de seguimiento planificadas que establecerán la órbita del planeta con mayor precisión.

"Si el planeta estuviera más lejos de la estrella más masiva del sistema, sería expulsado del sistema", explica Apai. "Nuestras simulaciones por ordenador han demostrado que este tipo de órbita puede ser estable, pero si cambias algo del entorno, aunque sea solo un poco, pueden convertirse en inestables muy rápidamente".

Los planetas en sistemas estelares múltiples son de especial interés para los astrónomos y los científicos planetarios, ya que proporcionan un ejemplo de cómo funciona el mecanismo de formación planetaria en estos escenarios más extremos. Aunque a nosotros, que vivimos en nuestra órbita alrededor de nuestra solitaria estrella, los sistemas estelares múltiples nos parezcan exóticos, se trata, en realidad, de sistemas tan comunes como las estrellas individuales.

"No está claro cómo este planeta terminó teniendo esa órbita amplia en este sistema extremo, y no podemos decir todavía lo que esto implica para una comprensión más amplia de los tipos de sistemas planetarios, pero muestra que hay que más variedad de la que se ha considerado posible hasta ahora", concluye Kevin Wagner. "Lo que sí sabemos es que, aunque los planetas en sistemas múltiples estelares se han estudiado mucho menos, son potencialmente tan numerosos como los planetas en sistemas de estrellas individuales".
.
NOTAS
.
[1] Las tres componentes de la estrella triple se denominan HD 131399A, HD 131399B y HD 131399C respectivamente, en orden decreciente de brillo. El planeta orbita la estrella más brillante y por lo tanto, se llama HD 131399Ab.

[2] Durante gran parte del año del planeta las estrellas aparecerían juntas en el cielo, dándole un lado de noche y un lado de día y una única triple puesta de sol y amanecer cada día. A medida que el planeta se mueve a lo largo de su órbita, las estrellas se separan un poco cada día, hasta llegar a un punto donde el amanecer de una coincide con la puesta de la otra —momento en que el planeta está casi constantemente de día en un cuarto de su órbita o, aproximadamente, durante 140 años terrestres.
.
.
.
.
.

La imagen más profunda de Orión


Utilizando el instrumento HAWK-I, instalado en el telescopio VLT (Very Large Telescope) de ESO, en Chile, se ha podido bucear en las profundidades del corazón de la nebulosa de Orión como nunca antes se había hecho. La espectacular imagen revela, aproximadamente, diez veces más enanas marrones y objetos aislados de masa planetaria de los conocidos hasta ahora. Este descubrimiento plantea desafíos al argumento, ampliamente aceptado hasta ahora, que explicaba la historia de la formación estelar en Orión.
.
Esta espectacular imagen de la región de formación estelar de la nebulosa de Orión está formada por múltiples exposiciones obtenidas con la cámara infrarroja HAWK-I, instalada en el VLT (Very Large Telescope) de ESO, en Chile. Esta es la visión más profunda jamás obtenida de esta región y revela más objetos débiles de masa planetaria de lo esperado. Crédito: ESO/H. Drass et al.
.

Un equipo internacional ha utilizado el potente instrumento infrarrojo HAWK-I, instalado en el VLT (Very Large Telescope) de ESO, para producir la imagen más profunda y completa de la Nebulosa de Orión [1] obtenida hasta la fecha. Esto no solo ha dado como resultado una imagen de espectacular belleza, sino que se ha descubierto una gran abundancia de tenues enanas marrones y de objetos aislados de masa planetaria. La presencia de estos cuerpos de baja masa proporciona una nueva e interesante información sobre la historia de la formación estelar dentro de la propia nebulosa.

La famosa nebulosa de Orión, de unos 24 años luz de tamaño, se encuentra en la constelación de Orión y es visible desde la Tierra a simple vista: parece una mancha borrosa en la espada de Orión. Algunas nebulosas, como Orión, están fuertemente iluminadas por la radiación ultravioleta de las numerosas estrellas calientes de su interior, de manera que el gas se ioniza y brilla intensamente.

La relativa proximidad de la nebulosa de Orión [2], hace que sea utilizada como un laboratorio de pruebas ideal para entender mejor el proceso y la historia de la formación estelar, así como para determinar cuántas estrellas de masas diferentes se forman.

Amelia Bayo (Universidad de Valparaíso, Valparaíso, Chile; Instituto Max-Planck de Astronomía, Königstuhl, Alemania), coautora del nuevo artículo y miembro del equipo de investigación, explica por qué esto es importante: "Para poder limitar las teorías actuales sobre formación estelar es muy importante comprender y conocer cuántos objetos de baja masa se encuentran en la nebulosa de Orión. Ahora somos conscientes de que la manera en que se forman estos objetos de muy baja masa depende de su entorno".

Esta nueva imagen ha causado revuelo porque revela una inesperada riqueza de objetos de baja masa, lo que a su vez sugiere que la nebulosa de Orión puede estar formando, en proporción, muchos más objetos de baja masa que otras regiones de formación estelar más cercanas y menos activas.

Los astrónomos cuentan cuántos objetos de diferentes masas se forman en regiones como la nebulosa de Orión para tratar de entender el proceso de formación de estrellas [3]. Antes de esta investigación, la mayor parte de los objetos encontrados tenía masas de alrededor de un cuarto de la masa de nuestro Sol. El descubrimiento de una plétora de nuevos objetos con masas muy inferiores en la nebulosa de Orión ha creado ahora un segundo máximo, con masas mucho más bajas en la distribución total de estrellas.

Estas observaciones también sugieren que el número de objetos de tamaño planetario podría ser mucho mayor de lo que se pensaba. Aunque la tecnología para observar fácilmente estos objetos aún no existe, el futuro E-ELT (European Extremely Large Telescope) de ESO, que comenzará sus operaciones en 2024, está diseñado para perseguir objetivos como este.

El investigador principal del equipo, Holger Drass (Instituto de Astronomía, Universidad Ruhr de Bochum, Alemania; Pontificia Universidad Católica de Chile, Santiago, Chile) afirma: "Para mí, nuestros resultados son como un vistazo a una nueva era de las ciencias que estudian la formación de planetas y estrellas. El enorme número de planetas que flotan libremente en nuestro actual límite de observación me está dando esperanzas para creer que, con el E-ELT, vamos a descubrir una gran cantidad de pequeños planetas del tamaño de la Tierra".
.
NOTAS
.
[1] Las nebulosas son inmensas nubes de gas interestelar, los lugares del universo en los que hay actividad de formación de estrellas.

[2] Se estima que la nebulosa de Orión se encuentran a unos 1.350 años luz de la Tierra.

[3] Esta información se utiliza para crear algo que se llama la función inicial de masa (IMF, de Initial Mass Function), una manera de describir cuantas estrellas de diferentes masas constituyen una población estelar en su nacimiento. Esto proporciona una visión de los orígenes de la población estelar. En otras palabras, determinar un IMF preciso y tener una sólida teoría para explicar el origen de esa IMF es de fundamental importancia en el estudio de la formación de estrellas.
.
.
.
.
.
ETIQUETASEuropean Southern ObservatoryESOAstronomía

Las superficies iluminadas artificialmente en la Tierra aumentan más de un 2% al año


La contaminación lumínica, producida principalmente por el exceso de iluminación nocturna o una iluminación incorrecta, supone un derroche energético que pone en peligro la salud humana y la de los ecosistemas. Entre 2012 y 2016 la iluminación artificial nocturna ha aumentado un 9,1%, a pesar del uso de sistemas de iluminación más eficientes.
.
Iluminación artificial de la Península ibérica vista desde la Estación Espacial Internacional.
.
La preocupación por la contaminación lumínica surgió en el ámbito astronómico, por la pérdida de calidad del cielo que perjudica las observaciones, pero en la última década han proliferado estudios que relacionan el exceso de iluminación nocturna con problemas en nuestra salud y con perjuicios en los ecosistemas que, sumados al derroche energético, muestran la importancia de regular la iluminación artificial. Hoy se publica en Science Advances un estudio a largo plazo que revela un claro aumento de las superficies iluminadas a nivel mundial.

Este aumento, de un 2,2% anual tanto en extensión como en intensidad, tiene lugar en un momento de transición a sistemas de iluminación LED, más capaces de reducir la emisión al espacio y su intensidad a demanda. "Los LED aún no están ayudando a reducir de manera global la contaminación lumínica y puede que estén ayudando a incrementarla", indica Alejandro Sánchez de Miguel, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) que participa en la investigación.

Este efecto rebote tiene antecedentes históricos, en los que el aumento de la eficiencia en la iluminación y la reducción de su coste generan un aumento del consumo en lugar de un descenso (comienzan a iluminarse regiones oscuras o se programa el alumbrado desde el atardecer). El constante aumento de la iluminación nocturna ha ocasionado que la mitad de Europa y un cuarto de Norteamérica sufran una "pérdida de la noche" generalizada, con la consiguiente modificación de los ciclos día y noche.

Los resultados del estudio muestran un aumento inequívoco de la iluminación en América del Sur, Asia y África, el descenso en ciertas regiones, entre ellas las que sufren conflictos armados, como Siria o Yemen, y el estancamiento en países como Estados Unidos, Italia o España, los más iluminados a nivel mundial.

"En el caso de España, hemos visto que desde 2012 se ha estabilizado pero no ha decrecido la contaminación lumínica. Vemos que en algunas grandes ciudades como Madrid el satélite recibe menos señal, pero eso se debe a una limitación del mismo para detectar la luz azul, que es intrínsecamente más contaminante. Es un casi similar al que vemos en Milán, pero menos pronunciado. Necesitamos explotar las posibilidades de las imágenes que toman los astronautas de la estación espacial internacional para poder medir el verdadero impacto, pero los datos actuales son suficientes para ver que globalmente estamos empeorando", explica Alejandro Sánchez de Miguel (IAA-CSIC).

En un plazo medio, parece que la iluminación artificial seguirá en aumento, erosionando las regiones de la Tierra que todavía experimentan ciclos naturales de día y noche. Un dato preocupante, porque la contaminación lumínica amenaza al 30% de los vertebrados y al 60% de los invertebrados nocturnos, tiene efectos sobre la fauna, flora y los microorganismos y cada vez más estudios señalan su impacto en la salud humana.

"Está probado que una mayor eficiencia energética no produce menores consumos energéticos globales: para lograr lo segundo necesitamos realizar un control de emisiones como se hace con las emisiones de dióxido de carbono. Además, hay que desarrollar políticas de alumbrado que contemplen el problema de la contaminación lumínica y intensificar el uso de sistemas eficientes: bien usados, los LED ámbar podrían ser la solución al problema", apunta Sánchez de Miguel (IAA-CSIC).
.
.
Referencia | C. C. M. Kyba et al. "Artificially lit surface of Earth at night increasing in radiance and extent". Science Advances, 22 de marzo 2017.
.
.
.
.
.
ETIQUETASAstronomíaEuropean Southern ObservatoryESOTecnologíaConsumo

Captado el proceso de muerte de una distante galaxia en colisión mientras pierde la capacidad de formar estrellas

.
Las galaxias comienzan a "morir" cuando dejan de formar estrellas, pero hasta ahora los astrónomos nunca habían vislumbrado claramente el comienzo de este proceso en una galaxia lejana. Los astrónomos han visto una galaxia expulsando casi la mitad de su gas, el elemento fundamental para la formación de estrellas.
.
Representación artística de la galaxia ID2299. Crédito: ESO/M. Kornmesser
.
.
“Es la primera vez que observamos una típica galaxia masiva formadora de estrellas en el universo distante a punto de 'morir' debido a una expulsión masiva de gas frío”, afirma Annagrazia Puglisi, investigadora principal del nuevo estudio, de la Universidad de Durham (Reino Unido) y el Centro de Investigación Nuclear Saclay (CEA-Saclay, Francia). La galaxia, ID2299, está tan lejos que su luz tarda unos 9 mil millones de años en llegar a nosotros; la vemos cuando el Universo tenía sólo 4.500 millones de años.

La eyección de gas equivale al necesario para alcanzar una tasa de formación de 10.000 soles al año, y está eliminando un asombroso 46% del gas frío total de ID2299. Debido a que la galaxia también está formando estrellas de forma muy rápida (cientos de veces más rápido que nuestra Vía Láctea), el gas restante se consumirá rápidamente, haciendo que ID2299 cese su producción en tan sólo unas pocas decenas de millones de años.

El evento responsable de la espectacular pérdida de gas, según el equipo, es una colisión entre dos galaxias que, finalmente, se fusionaron para formar ID2299. La escurridiza pista que llevó a los científicos hacia este escenario fue la asociación del gas expulsado con una "cola de marea". Las colas de marea son corrientes alargadas de estrellas y gas que se extienden en el espacio interestelar y que son el resultado de la fusión de dos galaxias, difíciles de ver en galaxias distantes porque, por lo general, son demasiado débiles. Sin embargo, el equipo logró observar este fenómeno relativamente brillante justo cuando se lanzaba al espacio y fueron capaces de identificarlo como una cola de marea.

La mayoría de los astrónomos cree que los vientos causados por la formación de estrellas y la actividad de los agujeros negros en los centros de galaxias masivas son responsables de lanzar material de formación de estrellas al espacio, terminando así con la capacidad de las galaxias para crear nuevas estrellas. Sin embargo, el nuevo estudio publicado hoy en Nature Astronomy sugiere que las fusiones galácticas también pueden ser responsables de expulsar al espacio el combustible necesario para la formación de estrellas.

“Nuestro estudio sugiere que las eyecciones de gas pueden producirse por fusiones y que los vientos y las colas de marea pueden parecer muy similares”, dice el coautor del estudio, Emanuele Daddi, de CEA-Saclay. Por eso es posible que algunos de los equipos que previamente identificaron vientos en galaxias distantes podrían haber estado observando, en realidad, colas de marea expulsando gas de estas galaxias. “Esto podría llevarnos a revisar nuestra comprensión de cómo 'mueren' las galaxias", añade Daddi.

Puglisi subraya la importancia del hallazgo del equipo añadiendo: "¡Estoy encantada de haber descubierto una galaxia tan excepcional! Estaba ansiosa por aprender más sobre este extraño objeto porque estaba convencida de que había una lección importante que aprender sobre cómo evolucionan las galaxias distantes”.

Este sorprendente descubrimiento se hizo por casualidad, mientras el equipo inspeccionaba un sondeo de galaxias, hecho con ALMA, diseñado para estudiar las propiedades del gas frío en más de 100 galaxias lejanas. ID2299 había sido observado por ALMA durante sólo unos minutos, pero el potente observatorio, ubicado en el norte de Chile, permitió al equipo recopilar suficientes datos como para detectar la galaxia y su cola de eyección.

“ALMA ha arrojado nueva luz sobre los mecanismos que pueden detener la formación de estrellas en galaxias distantes. Ser testigos de un evento de disrupción tan masiva añade una pieza importante al complejo rompecabezas de la evolución de las galaxias”,indica Chiara Circosta, investigadora del University College de Londres (Reino Unido), quien también contribuyó a la investigación.

En el futuro, el equipo podría usar ALMA para hacer observaciones más profundas y de mayor resolución de esta galaxia, permitiéndoles comprender mejor la dinámica del gas expulsado. Las observaciones con el futuro Telescopio Extremadamente Grande de ESO podrían permitir al equipo explorar las conexiones entre las estrellas y el gas en ID2299, arrojando nueva luz sobre cómo evolucionan las galaxias.
.
.
.
.

ESPRESSO confirma la exo-Tierra más cercana con una precisión sin precedentes


Un equipo internacional en el que participan investigadores del Instituto de Astrofísica de Canarias (IAC), de otras instituciones en España, Italia, Portugal, Suiza y del Observatorio Europeo Austral (ESO), ha confirmado la presencia del planeta extrasolar Próxima b utilizando medidas de velocidad radial del espectrógrafo ESPRESSO, instalado en el Very Large Telescope (VLT), de Chile.
.
Representación artística del exoplaneta rocoso Próxima b orbitando su estrella, Próxima Centauri. Crédito: Gabriel Pérez Díaz, SMM (IAC)
.
.
El estudio, liderado por el investigador del Instituto de Astrofísica de Canarias (IAC) Alejandro Suárez Mascareño, presenta evidencia rotunda de la presencia del planeta Próxima b, descubierto hace cuatro años orbitando a la estrella más cercana al Sol, Próxima Centauri. Entonces, un equipo liderado por el investigador Guillem Anglada-Escudé midió una perturbación en la velocidad radial de la estrella de poco más de 1 metro por segundo, cerca del límite de la precisión de los instrumentos del momento. Se trataba de un candidato a exoplaneta de masa similar a la Tierra y situado en la zona de habitabilidad de su estrella. La confirmación se ha llevado a cabo utilizando medidas de velocidad radial realizadas con el nuevo instrumento ESPRESSO, el espectrógrafo más preciso construido hasta la fecha.

ESPRESSO ha obtenido medidas de velocidad radial en la estrella Próxima Centauri con una precisión de 30 cm/s, cuatro veces mejores que las obtenidas con HARPS, el instrumento usado para el descubrimiento. Combinando esta precisión con la cantidad de fotones que puede colectar el Very Large Telescope (VLT), en el que está instalado, se abre la puerta a descubrir la población de planetas terrestres (incluso de masa muy inferior a la Tierra) en las estrellas del vecindario solar. “ESPRESSO ha demostrado que puede llegar más allá de lo que ningún espectrógrafo había llegado antes”, comenta Alejandro Suárez Mascareño, primer autor de la publicación. Y añade: “Se abre un nuevo escenario. Hasta ahora habíamos estado limitados a descubrir planetas de varias masas terrestres o, como mucho, alrededor de una masa terrestre en estrellas frías. Con ESPRESSO esta limitación desaparece”.

La precisión única de ESPRESSO ha requerido un importante esfuerzo de ingeniería por parte del consorcio internacional que lo ha hecho posible, involucrando instituciones como la Universidad de Ginebra (Suiza), el Instituto de Astrofísica y Ciencias del Espacio (Portugal), el Instituto Nacional de Astrofísica (INAF, Italia) , el Instituto de Ciencias del Espacio (Portugal), el Centro de Astrobiología en España y el European Southern Observatory (ESO). En el IAC, una de las instituciones codirectoras del proyecto, se han desarrollado varios de los componentes opto-mecánicos clave del espectrógrafo. Las nuevas observaciones posibilitan una detección mucho más clara y rápida que la originalmente publicada, refinan nuestro conocimiento de los parámetros físicos del planeta y descartan que el origen de la señal pudiese estar causado por efectos estelares o efectos sistemáticos de los instrumentos de la pasada generación.

“Confirmar Próxima b -señala Jonay González Hernández, investigador del IAC y coautor del trabajo- era una tarea importante. Se trata de uno de los planetas más interesantes conocidos en el vecindario solar. Su masa -similar a la de la Tierra-, la posibilidad de que pueda albergar vida y su cercanía, lo convierten en uno de los candidatos ideales para la búsqueda de biomarcadores usando instrumentación y telescopios de próxima generación, como el espectrógrafo HIRES, para el futuro telescopio de 39 m ELT, en cuya construcción participa el IAC”.

Acompañando a Próxima b, el equipo encontró también indicios de una segunda señal en los datos cuya causa no ha podido establecerse de forma definitiva. “En caso de tratarse de la señal de un planeta, podría tener una masa inferior a un tercio de la masa de la Tierra”, explica Rafael Rebolo, director del IAC y codirector del proyecto ESPRESSO. Los resultados de este trabajo contribuyen a esclarecer las condiciones del sistema planetario más cercano a la Tierra y han sido aceptados para su publicación en la revista Astronomy & Astrophysics.

Además de los investigadores Alejandro Suárez Mascareño, Jonay González Hernández y Rafael Rebolo López, desde el IAC también han colaborado en esta publicación los investigadores del IAC Felipe Murgas, Carlos Allende Prieto, Manuel Amate, Ana Belén Fragoso, Ricardo Génova Santos, Enric Pallé, José Luis Rasilla, Samuel Santana Tschudi y Fabio Tenegi Sanginés.
.
Trabajo de referencia | A. Suárez Mascareño et al. "Revisiting Proxima with ESPRESSO", Astronomy & Astrophysics, May 25, 2020. https://arxiv.org/abs/2005.12114
.
.
ETIQUETASAstronomíaEuropean Southern ObservatoryESO
.
.
.
.
.
.

Observaciones de 'ESO' muestran que el primer asteroide interestelar no se parece a nada visto antes


Por primera vez los astrónomos han estudiado un asteroide que ha entrado en el Sistema Solar desde el espacio interestelar. Observaciones llevadas a cabo con el VLT (Very Large Telescope) en Chile, y con otros observatorios del mundo, muestran que este objeto único ha viajado por el espacio durante millones de años antes de su encuentro casual con nuestro sistema estelar.
.
Ilustración del asteroide interestelar 'Oumuamua. © ESO/M. Kornmesser
.
El 19 de octubre de 2017, el telescopio Pan-STARRS 1, en Hawái, captó un débil punto de luz moviéndose a través del cielo. Al principio parecía un pequeño asteroide típico de rápido movimiento, pero observaciones llevadas a cabo durante los dos días posteriores, permitieron calcular su órbita con bastante precisión, lo que reveló, sin ninguna duda, que este cuerpo no se originó dentro del Sistema Solar, como todos los demás asteroides o cometas observados hasta ahora, sino que venía del espacio interestelar. Aunque originalmente fue clasificado como cometa, observaciones de ESO y de otras instalaciones no revelaron signos de actividad cometaria tras su paso más cercano al Sol, en septiembre de 2017.

“Tuvimos que actuar con rapidez”, explica Olivier Hainaut, miembro del equipo de ESO, en Garching (Alemania). “'Oumuamua había pasado ya su punto más cercano al Sol y se dirigía hacia el espacio interestelar”.

Dado que puede hacerlo con mucha más precisión que telescopios más pequeños, el telescopio VLT (Very Large Telescope) de ESO entró inmediatamente en acción para medir la órbita, el brillo y el color del objeto. La rapidez era vital, ya que 'Oumuamua está desapareciendo rápidamente, pues se aleja del Sol y ha pasado la órbita de la Tierra, en su camino fuera del Sistema Solar. Pero había más sorpresas por venir.

Combinando las imágenes del instrumento FORS del VLT (con cuatro filtros diferentes) con las de otros grandes telescopios, el equipo de astrónomos dirigido por Karen Meech (Instituto de Astronomía, Hawái, EE.UU.) descubrió que 'Oumuamua varía muchísimo su brillo, en un factor de diez, a medida que gira sobre su eje cada 7,3 horas.

Karen Meech lo explica: “Esta gran variación en brillo, poco común, significa que el objeto es muy alargado: su longitud es unas diez veces mayor que su anchura, con una forma compleja y enrevesada. También descubrimos que tiene un color rojo oscuro, similar a los objetos del Sistema Solar exterior, y confirmamos que es totalmente inerte, sin el menor atisbo de polvo alrededor de él”.

Estas propiedades sugieren que 'Oumuamua es denso, posiblemente rocosos o con gran contenido metálico, sin cantidades significativas de hielo ni agua, y que su superficie ahora es oscura y está enrojecida debido a los efectos de la irradiación de rayos cósmicos durante millones de años. Se estima que mide al menos 400 metros de largo.

Cálculos orbitales preliminares sugieren que el objeto viene aproximadamente de la dirección en la que se encuentra la brillante estrella Vega, en la constelación septentrional de Lyra. Sin embargo, incluso viajando a la vertiginosa velocidad de 95000 kilómetros/hora, le llevó tanto tiempo a este objeto interestelar hacer el viaje a nuestro Sistema Solar que Vega no estaba cerca de esa posición cuando el asteroide estaba allí, hace unos 300.000 años. Es probable que 'Oumuamua haya estado vagando a través de la Vía Láctea, independiente a cualquier sistema estelar, durante cientos de millones de años antes de su casual encuentro con el Sistema Solar.

Los astrónomos estiman que, una vez al año, un asteroide interestelar similar a 'Oumuamua pasa por el interior del Sistema Solar, pero son débiles y difíciles de detectar, por lo que no se han visto hasta ahora. Gracias a los nuevos telescopios de rastreo como Pan-STARRS, que son lo suficientemente potentes, ahora tenemos la oportunidad de descubrirlos.

“Seguimos observando este objeto único”, concluye Olivier Hainaut, “y esperamos precisar con más exactitud de dónde proviene y cuál será su próximo destino en su viaje por la galaxia. Y ahora que hemos encontrado la primera roca interestelar, ¡nos estamos preparando para las próximas!”.
.
.
.
.
.
ETIQUETASAstronomíaEuropean Southern ObservatoryESO

Hallados mundos templados similares a la Tierra en un sistema planetario extraordinariamente rico


Los astrónomos han descubierto un sistema de siete planetas del tamaño de la Tierra a sólo 40 años luz de distancia. Tres de los planetas se encuentran en la zona habitable y podrían albergar océanos de agua en sus superficies, aumentando la posibilidad de que el sistema pudiese acoger vida. Este sistema encontrado tiene tanto el mayor número de planetas del tamaño de la Tierra como el mayor número de mundos que podrían contar con agua líquida en sus superficies.
.
Esta impresión artística muestra a TRAPPIST-1 y a sus planetas reflejados sobre una superficie. El potencial para albergar agua en cada uno de los mundos está representado también por el hielo, las masas de agua y el vapor que rodean la escena. La imagen aparece en la portada de la revista Nature del 22 de febrero de 2017. Crédito: NASA/R. Hurt/T. Pyle
.

Utilizando el telescopio TRAPPIST–Sur, instalado en el Observatorio La Silla, el Very Large Telescope (VLT), en Paranal, y el telescopio espacial Spitzer de la NASA, así como otros telescopios del mundo, los astrónomos han confirmado la existencia de, al menos, siete pequeños planetas orbitando la estrella enana roja fría TRAPPIST-1. Todos los planetas, nombrados como TRAPPIST-1b, c, d, e, f, g y h, en orden creciente de distancia de su estrella, tienen tamaños similares a la Tierra.

Los astrónomos observaron los cambios en la emisión de luz de la estrella causados por cada uno de los siete planetas que pasan delante de ella — un evento conocido como tránsito — y esto les permitió extraer información acerca de sus tamaños, composiciones y órbitas. Descubrieron que, al menos los seis planetas interiores, son comparables a la Tierra en cuanto a tamaño y temperatura.

El autor principal, Michaël Gillon, del Instituto STAR en la Universidad de Lieja (Bélgica) está encantado con los resultados: "Se trata de un sistema planetario sorprendente, no sólo porque hayamos encontrado tantos planetas, ¡sino porque son todos asombrosamente similares en tamaño a la Tierra!".

Con tan solo el 8% la masa del Sol, TRAPPIST-1 es muy pequeña en términos estelares (solo un poco más grande que el planeta Júpiter) y, aunque está relativamente cerca de nosotros, en la constelación de Acuario (el aguador), es muy tenue. Los astrónomos esperaban que este tipo de estrellas enanas pudieran albergar muchos planetas del tamaño de la Tierra en órbitas apretadas, convirtiéndolas en objetivos prometedores para la búsqueda de vida extraterrestre, pero TRAPPIST-1 es el primer sistema de este tipo descubierto.

El coautor Amaury Triaud amplía la información: "La emisión de energía de estrellas enanas como TRAPPIST-1 es mucho más débil que la de nuestro Sol. Para que hubiera agua en sus superficies los planetas tendrían que estar en órbitas mucho más cercanas que las que podemos ver en el Sistema Solar. Afortunadamente, parece que este tipo de configuración compacta ¡es lo que estamos viendo alrededor de TRAPPIST-1!".

El equipo determinó que todos los planetas del sistema son similares en tamaño a la Tierra y a Venus, o un poco más pequeños. Las mediciones de densidad sugieren que, al menos, los seis planetas de la zona más interna son probablemente rocosos en su composición.

Las órbitas planetarias no son mucho más grandes que las del sistema galileano de lunas de Júpiter y mucho más pequeñas que la órbita de Mercurio en el Sistema Solar. Sin embargo, el pequeño tamaño de TRAPPIST-1 y su baja temperatura significan que la energía que proporciona a sus planetas es similar a la recibida por los planetas interiores de nuestro Sistema Solar; TRAPPIST-1c, d y f reciben cantidades similares de energía que Venus, la Tierra y Marte, respectivamente.

Los siete planetas descubiertos en el sistema podrían, potencialmente, tener agua líquida en sus superficies, aunque sus distancias orbitales hacen que esto sean más probable en algunos de los candidatos que en otros. Los modelos climáticos sugieren que los planetas más interiores, TRAPPIST-1b, c y d, son probablemente demasiado calientes para albergar agua líquida, excepto tal vez en una pequeña fracción de sus superficies. La distancia orbital del planeta más externo del sistema, TRAPPIST-1h, no se ha confirmado, aunque es probable que sea demasiado distante y frío para albergar agua líquida — suponiendo que no esté teniendo lugar ningún proceso de calentamiento alternativo. TRAPPIST-1e, f y g, sin embargo, representan el santo grial para los astrónomos cazadores de planetas, ya que orbitan en la zona habitable de la estrella y podrían albergar océanos de agua en sus superficies.

Estos nuevos descubrimientos hacen del sistema de TRAPPIST-1 un objetivo muy importante para futuros estudios. El Telescopio Espacial Hubble de NASA/ESA ya está siendo utilizado para buscar atmósferas alrededor de los planetas y el miembro del equipo, Emmanuël Jehin, está entusiasmado con las futuras posibilidades: "Con la próxima generación de telescopios como el E-ELT (European Extremely Large Telescope de ESO), y el telescopio espacial JWST (NASA/ESA/CSA James Webb Space Telescope) pronto podremos buscar agua e incluso pruebas de vida en estos mundos".
.
.
.
.
.
ETIQUETASAstronomíaEuropean Southern ObservatoryESO

Los ‘vigilantes de agujeros negros’ encuentran uno inactivo fuera de nuestra galaxia

.
Un equipo internacional con amplia experiencia, reconocido por refutar varios descubrimientos de agujeros negros, ha descubierto un agujero negro de masa estelar en la Gran Nube de Magallanes, una galaxia vecina a la nuestra. Tal y como afirma el autor principal del estudio, Tomer Shenar, "Por primera vez, nuestro equipo se reunió para dar a conocer el descubrimiento de un agujero negro en lugar de refutarlo".
.
El agujero negro descubierto ahora tiene al menos nueve veces la masa de nuestro Sol. Imagen: ESO/L. Calçada
.
.
"Identificamos una 'aguja en un pajar'", confirma Tomer Shenar, quien comenzó el estudio en el centro KU Leuven, en Bélgica y ahora cuenta con una beca Marie-Curie en la Universidad de Ámsterdam (Países Bajos). Aunque se han propuesto otros candidatos similares a agujeros negros, el equipo afirma que este es el primer agujero negro de masa estelar "inactivo" que se detecta inequívocamente fuera de nuestra galaxia.

Los agujeros negros de masa estelar se forman cuando las estrellas masivas llegan al final de sus vidas y colapsan bajo su propia gravedad. En un sistema binario (un sistema de dos estrellas que giran una alrededor de la otra), este proceso deja un agujero negro en órbita con una estrella compañera luminosa. El agujero negro está "inactivo" si no emite altos niveles de radiación de rayos X, que es la forma en que normalmente se detectan dichos agujeros negros. "Es increíble que apenas sepamos de la existencia de estos agujeros negros inactivos, dado lo comunes que la comunidad astronómica supone que son”, explica el coautor, Pablo Marchant, de KU Leuven. El agujero negro recién encontrado tiene al menos nueve veces la masa de nuestro Sol y orbita una estrella azul caliente que pesa 25 veces la masa del Sol.

Los agujeros negros inactivos son particularmente difíciles de detectar ya que no interactúan mucho con su entorno. "Durante más de dos años, hemos estado buscando este tipo de sistemas binarios de agujeros negros", afirma la coautora, Julia Bodensteiner, investigadora de ESO en Alemania. "Me emocioné mucho cuando conocí los datos sobre VFTS 243, que en mi opinión es el candidato más convincente reportado hasta la fecha."

Para encontrar a VFTS 243, la colaboración buscó casi 1000 estrellas masivas en la región de la Nebulosa de la Tarántula de la Gran Nube de Magallanes, buscando las que podrían tener agujeros negros como compañeros. Identificar a estos compañeros como agujeros negros es extremadamente difícil, ya que existen muchas posibilidades alternativas.

"Como investigador que ha refutado posibles agujeros negros en los últimos años, era extremadamente escéptico con respecto a este descubrimiento", dice Shenar. El escepticismo fue compartido por el coautor Kareem El-Badry, del Centro de Astrofísica Harvard & Smithsonian, en los Estados Unidos, a quien Shenar llama el "destructor de agujeros negros". "Cuando Tomer me pidió que revisara sus hallazgos, tuve mis dudas. Pero no pude encontrar una explicación plausible para los datos que no involucraran un agujero negro", explica El-Badry.

El descubrimiento también ofrece al equipo una visión única de los procesos que acompañan la formación de agujeros negros. La comunidad astronómica cree que un agujero negro de masa estelar se forma a medida que el núcleo de una estrella masiva moribunda colapsa, pero sigue sin quedar claro si este proceso va acompañado o no por una potente explosión de supernova.

"La estrella que formó el agujero negro en VFTS 243 parece haber colapsado por completo, sin signos de una explosión anterior", explica Shenar. "La evidencia de este escenario de 'colapso directo' ha surgido recientemente, pero podría decirse que nuestro estudio proporciona una de las indicaciones más claras. Esto tiene enormes implicaciones para el origen de las fusiones de agujeros negros en el cosmos.".

El agujero negro de VFTS 243 se encontró utilizando seis años de observaciones de la Nebulosa de la Tarántula llevadas a cabo por el instrumento FLAMES (Fibre Large Array Multi Element Spectrograph, espectrógrafo multielemento de gran matriz de fibras), instalado en el VLT de ESO.

A pesar del apodo de "policía de agujeros negros", el equipo fomenta activamente el escrutinio y espera que su trabajo, publicado hoy en Nature Astronomy, permita el descubrimiento de otros agujeros negros de masa estelar que orbitan estrellas masivas, miles de los cuales se predice que existen en la Vía Láctea y en las Nubes de Magallanes.

"Por supuesto, espero que otras personas que trabajan en este campo estudien detenidamente nuestro análisis y traten de deducir modelos alternativos", concluye El-Badry. "Es un proyecto muy emocionante del que formar parte".
.
Trabajo de referencia | Shenar, T. et al. «An X-ray-quiet black hole born with a negligible kick in a massive binary within the Large Magellanic Cloud». Nature Astronomy, julio de 2022. DOI: 10.1038/s41550-022-01730-y
.
.
.
.